Duž

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web-stranice ili drugi izvori).
Ako se pravilno ne potkrijepe validnim izvorima, sporne rečenice i navodi mogli bi biti obrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.

Duž (osječak) prave je skup koji sačinjavaju tačke A,B prave a i sve tačke koje se nalaze između tih tačaka. Tačke A, B su krajevi duži, a ostale tačke unutrašnje tačke duži. Skup tih tačaka je otvorena duž. Duž ćiji su krajevi A i B nazivamo rastojanje (odstojanje) tačaka Ai B. Za duž ćiji su krajevi A i B kažemo da je duž AB i označavamo sa AB ili BA Duž čiji se krajevi A i B poklapaju naziva se nulta duž.

Orjentisana duž[uredi | uredi izvor]

Orjentisana duž je duž čiji su krajevi tačke, a nazivamo je i vektorom. Prvi kraj orjentisane duži AB je početak te duži. Uzmimo uređenost prave u smjeru u kome je A<B i C<D kažemo da vektori\vec AB i \vec CD imaju isti smjer; a ako je D<C onda vektori \vec AB i \vec CD imaju suprotne smjerove.

Nula duž određuje nula vektor \vec 0

Sadržavanje duži[uredi | uredi izvor]

Teoreme

  1. Ako je M unutrašnja tačka duži AB onda

duž AM i MB sadrže se strogo u duži AB tj AM je podskup od AB i BM podskup AB

  • duž AB= AM U MB i pri tom je AM ∩ MB = (M)
  • ako su M i N unutrašnje tačke duži AB onda se duž MN sadrži u AB

2. Ako su M,N unutrašnje tačke duži AB onda se duž MN sadrži u duži AB Posljedica

  1. duž (prava) sadrže beskonačno mnogo tačaka
  2. ravan sadrži beskonačno mnogo tačaka

Skup svih pravi koje prolaze kroz tačku ravni i leže u toj ravni ćine pramen pravih s vrhom u tački A.

Aksioma prenošenja duži

Na datoj polupravoj postoji jedna i samo jedna tačka B takva da je duž jednaka datoj duži.

Posljedica

Ako su B, B1 dvije tačke poluprave sa početkom A takve da je AB=AB1 onda je B=B1. Odnosno dvije različite tačke poluprave ne mogu imati jednako rastojanje od početka poluprave.

Sredina duži[uredi | uredi izvor]

Tačka M duži AB koja ima jednako rastojanje od krajeva A i B duži ( AM=MB) naziva se sredina duži Teorema Duž može da ima samo jednu sredinu. Dokaz Neka duž AB ima dvije sredineM i N. AM=MB AN=NB

Za A<B je A<M<N<B ili A<N<M<B. Posmatrajmo A<M<N<B odnosno imamo niz relacija AM<AN ; AN=BN ; BN<BM odnosno AM<BM, nemoguće jer je AM=BM Ako je m sredina duži onda je AB=AM+MB=2 AM

Sabiranje duži[uredi | uredi izvor]

Neka su A,B,C bilo koje tačke prave takve da je A<B<C, tj AB=a i BC=b , duž AC zvaćemo zbirom duži a i b.

Aksiom zbira duži

Ako su tačke A,B,C kolinearne i M,N,P isto kolinearne tačke takve da je AB=MN i BC=NP onda je i AC=MP.

Teorema (pravilo zamjene)

Ako su odgovarajući sabirci dvaju zbirova duži jednaki onda su i zbirovi jednaki.

(a= a1 & b=b1) => a+b=a1 + b1 Na osnovu ove teoreme proizlazi a=b=>a+c=b+c Komutativnost zbira duži a+b=b+a Asocijativnost (a+b)+c=a+(b+c)

Zbir od n jednakih duži a označavamo sa na. Za proizvod na važ: m(na)=(mn)a (m+n)a=ma + na m(a+b)= ma+mb

Za b=na važi a=b/n

Razlika duži[uredi | uredi izvor]

Za a>b na duži AB postoji tačka C takva da je AC=b, duž a jednaka je zbiru duži b i c. Duž c nazivamo razlika duži a i b.

Odnosno razlika duži a i b (a>b) koja se označava sa a-b je svaka duž c takva da je b+c= c+b=a.

b+c=a => c=a-b

Razlika jednakih duži jednaka je nuli.

Upoređivanje duži[uredi | uredi izvor]

Neka su a i b proizvoljne duži na poluprave sa početkom u A.

Nađimo tačke B i C takve da je AB=a i AC=b . Za A<B<C kažemo da je duž a manja od duži b( aa)

Ako su tačke B i C na jednoj polupravoj sa početkom u A, a B1, C1 na drugoj sa početkom u A1 takve da je AB=A1B1 & AC=A1C1, ako je A<B<C onda je i A1,B1<C1

Teorema

Ako je a=a1; b=b1 i a<a1 onda je i a<b1 Teorema Za proizvoljne duži a,b isključivo je ab

Dokaz

Ako prenesemo duži a,b na polupravu sa početkom u O tako da je OA=a i OB=b. Tada je moguć samo jedan od ova tri slučaja

  • A=B onda je a=b
  • O<A<B onda je a<b
  • O<B<A onda je b<a

Teorema( Zakon tranzitivnosti)

Za duži a,b,c važi ( a<b & b<c) => a<c

Teorema(Zakon monotonije)

Za duži a,b,c važi ako je a<b onda je a+cb na duži AB postoji tačka C takva da je AC=b, duž a jednaka je zbiru duži b i c. Duž c nazivamo razlika duži a i b.

Odnosno razlika duži a i b (a>b) koja se označava sa a-b je svaka duž c takva da je b+c= c+b=a.

b+c=a => c=a-b

Razlika jednakih duži jednaka je nuli.

Također pogledajte[uredi | uredi izvor]


E-to-the-i-pi.svg Nedovršeni članak Duž koji govori o matematici treba dopuniti. Dopunite ga prema pravilima Wikipedije.

Commons logo
U Wikimedijinom spremniku se nalazi još materijala vezanih uz: