ATM (gen)

S Wikipedije, slobodne enciklopedije
ATM (gen)
Identifikatori
AliasiATM
Vanjski ID-jeviOMIM: 607585 MGI: 107202 HomoloGene: 30952 GeneCards: ATM
Lokacija gena (čovjek)
Hromosom 11 (čovjek)
Hrom.Hromosom 11 (čovjek)[1]
Hromosom 11 (čovjek)
Genomska lokacija za ATM (gen)
Genomska lokacija za ATM (gen)
Bend11q22.3Početak108,223,044 bp[1]
Kraj108,369,102 bp[1]
Lokacija gena (miš)
Hromosom 9 (miš)
Hrom.Hromosom 9 (miš)[2]
Hromosom 9 (miš)
Genomska lokacija za ATM (gen)
Genomska lokacija za ATM (gen)
Bend9 A5.3|9 29.12 cMPočetak53,350,449 bp[2]
Kraj53,448,040 bp[2]
Ontologija gena
Molekularna funkcija aktivnost sa transferazom
vezivanje sa DNK
nucleotide binding
protein kinase activity
DNA-dependent protein kinase activity
protein dimerization activity
protein N-terminus binding
1-phosphatidylinositol-3-kinase activity
kinase activity
protein serine/threonine kinase activity
GO:0001948, GO:0016582 vezivanje za proteine
ATP binding
GO:0032403 protein-containing complex binding
Ćelijska komponenta citoplazma
DNA repair complex
Diobeno vreteno
nukleoplazma
Telomera
GO:0016023 citoplazmatska vezikula
jedro
Jedarce
Biološki proces somitogenesis
response to ionizing radiation
neuron apoptotic process
reciprocal meiotic recombination
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest
response to hypoxia
female gamete generation
determination of adult lifespan
Fosforilacija
establishment of protein-containing complex localization to telomere
meiotic telomere clustering
peptidyl-serine autophosphorylation
DNA damage checkpoint signaling
regulation of telomerase activity
positive regulation of telomerase catalytic core complex assembly
positive regulation of telomere maintenance via telomerase
positive regulation of neuron death
mitotic spindle assembly checkpoint signaling
oocyte development
lipoprotein catabolic process
regulation of cell cycle
protein phosphorylation
heart development
brain development
positive regulation of neuron apoptotic process
negative regulation of telomere capping
positive regulation of telomere maintenance via telomere lengthening
GO:0035404 peptidyl-serine phosphorylation
cellular response to gamma radiation
intrinsic apoptotic signaling pathway in response to DNA damage
V(D)J rekombinacija
positive regulation of apoptotic process
regulation of cellular response to heat
pre-B cell allelic exclusion
ćelijski ciklus
histone mRNA catabolic process
cellular response to nitrosative stress
positive regulation of DNA damage response, signal transduction by p53 class mediator
double-strand break repair via nonhomologous end joining
negative regulation of B cell proliferation
GO:0072468 Transdukcija signala
establishment of RNA localization to telomere
GO:0097285 apoptoza
Replikacija DNK
DNA double-strand break processing
regulation of signal transduction by p53 class mediator
regulation of autophagy
phosphatidylinositol-3-phosphate biosynthetic process
cellular response to X-ray
double-strand break repair via homologous recombination
regulation of apoptotic process
negative regulation of TORC1 signaling
ovarian follicle development
immune system process
immunoglobulin production
DNA damage induced protein phosphorylation
male meiotic nuclear division
female meiotic nuclear division
female gonad development
post-embryonic development
multicellular organism growth
protein autophosphorylation
thymus development
GO:0051178 chromosome organization involved in meiotic cell cycle
GO:0100026 Popravka DNK
cellular response to DNA damage stimulus
regulation of telomere maintenance via telomerase
positive regulation of DNA catabolic process
regulation of microglial cell activation
regulation of cellular response to gamma radiation
positive regulation of response to DNA damage stimulus
telomere maintenance
replicative senescence
GO:1901313 positive regulation of gene expression
positive regulation of cell migration
positive regulation of cell adhesion
GO:0003257, GO:0010735, GO:1901228, GO:1900622, GO:1904488 positive regulation of transcription by RNA polymerase II
cellular response to retinoic acid
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)
NM_000051
NM_138292
NM_138293
NM_001351834
NM_001351835

NM_001351836

NM_007499

RefSeq (bjelančevina)

NP_000042
NP_001338763
NP_001338764
NP_001338765
NP_000042.3

NP_031525

Lokacija (UCSC)Chr 11: 108.22 – 108.37 MbChr 9: 53.35 – 53.45 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

ATM serin/treonin-kinaza, simbol ATM, je serin/treonineska protein-kinaza koja se regrutira i aktivira dvolančane prekide DNK. Fosforilizira nekoliko ključnih proteina koji iniciraju aktivaciju kontrolne tačke oštećenja DNK, što dovodi do zaustavljanja ćelijskog ciklusa, poravnavanja DNK ili apoptoza. Nekoliko ovih meta, uključujući p53, CHK2, BRCA1, NBS1 i H2AX su supresori tumora.

Godine 1995., gen je otkrio dr Yosef Shiloh[5] koji je svoj proizvod nazvao ATM jer je otkrio da su njegove mutacije odgovorne za poremećaj ataksija – telangiektazija.[6] U 1998, laboratorije Shiloh i Kastan nezavisno su pokazale da je ATM protein-kinaza, čija je aktivnost pojačana oštećenjem DNK.[7][8]

Četiri poznata konzervirna domena u četiri člana porodice PIKK

Funkcija[uredi | uredi izvor]

Kompleks od tri proteina: MRE11, RAD50 i NBS1 (XRS2 u kvascu), zvani MRN složen kod ljudi, regrutuje ATM na dvolančane prekide (DSB) i drži dva kraja zajedno. ATM direktno stupa u interakciju sa podjedinicom NBS1 i fosforilizira histonsku varijantu H2AX na Ser139.[9] Ova fosforilacija generira mjesta vezanja za adapterske proteine sa BRCT-domenom. Ovi adapterski proteini tada regrutiraju različite faktore uključujući efektorsku protein kinazu CHK2 i supresor tumora p53. Odgovor na oštećenje DNK posredstvom ATM-a sastoji se od brzog i odgođenog odgovora. Efektorna kinaza CHK2 je fosforilirana i aktivirana pomoću ATM-a. Aktivirani CHK2 fosforilira fosfatazu CDC25A, koja se zatim razgrađuje i više ne može defosforilirati CDK1-ciklin-B, što rezultira zaustavljanjem ćelijskog ciklusa. Ako se DSB ne može popraviti tokom ovog brzog odgovora, ATM dodatno fosforilira MDM2 i p53 na Ser15.[10] I p53 je također fosforiliran efektorskom kinazom CHK2. Ovi događaji fosforilacija dovode do stabilizacije i aktivacije p53 i kasnije transkripcije brojnih gena za ciljanje p53, uključujući inhibitor CDK p21 što dovodi do dugotrajnog zastoja u ćelijskom ciklusu ili čak do apoptoze.[11]

ATM-posredovani dvostepeni odgovor na prekide dvostrukih lanaca DNK. U brzom odgovoru, aktivirani ATM fosforilira efektorski kinazu CHK2 koja fosforilira CDC25A, ciljajući je na ubikvitinaciju i razgradnju.
Zato se fosforilirani CDK2-ciklin akumulira i progresija kroz ćelijski ciklus je blokirana. U odgođenom odgovoru, ATM fosforilizira inhibitore p53, MDM2 i p53, koji je takođe fosforilizirao Chk2. Rezultirajuća aktivacija i stabilizacija p53 dovodi do povećane ekspresije inhibitora Cdk p21, što dodatno pomaže u održavanju niske aktivnosti Cdk i u održavanju dugotrajnog zastoja ćelijskog ciklusa.[11]

ATM protein-kinaze također može biti uključen u mitohondrijsku homeostazu, kao regulator mitohondrijske autofagije] (mitofagije) pri čemu se uklanjaju stare, disfunkcionalne mitohondrije.[12] Povećana aktivnost ATM-a javlja se i kod virusne infekcije gdje se ATM aktivira rano tokom infekcije virusom denga, kao dio indukcije autofagije i odgovora na ER- stres.[13]

Regulacija[uredi | uredi izvor]

Za aktiviranje ATM nakon DSB-a potreban je funkcionalan kompleks MRN. Kompleks funkcionira uzvodno od ATM-a u ćelijama sisara i izaziva konformacijske promjene koje olakšavaju povećanje afiniteta ATM-a prema njegovim podlogama, poput CHK2 i p53.<ef narme= "pmid18066086"/> Neaktivni ATM prisutan je u ćelijama bez DSB-a u obliku dimera ili multimera. Nakon oštećenja DNK, on se autofosforilira na ostatku Ser1981. Ova fosforilacija izaziva disocijaciju ATM dimera, nakon čega slijedi oslobađanje aktivnih ATM monomera.[14] Dalja autofosforilacija (ostataka Ser367 i Ser1893) potrebna je za normalnu aktivnost ATM-kinaze. Aktivaciji ATM-a kompleksom MRN prethode najmanje dva koraka, tj. regrutiranje ATM-a u DSB završava posrednik proteina 1 kontrolne tačke oštećenja DNK (MDC1) koji se veže do MRE11 i naknadna stimulacija aktivnosti kinaze sa NBS1 C-terminala. Tri domena FAT, PRD i FATC uključena su u regulisanje aktivnosti domena KD-kinaze. FAT domen stupa u interakciju s KD domenom ATM-a, kako bi stabilizirao područje C-kraja samog ATM-a. FATC domen je kritičan za aktivnost kinaze i vrlo je osjetljiv na mutagenezu. Posreduje u interakciji protein-protein, n primjer sa histonskom acetiltransferazom TIP60 (HIV-1 Tat interakcijski protein od 60 kDa), koji acetilira ATM na ostatku Lys3016. Acetilacija se događa u C-terminalnoj polovini PRD-domena i potrebna je za aktivaciju ATM-kinaze i za njenu pretvorbu u monomere. Dok delecija cijelog domena PRD ukida kinaznu aktivnost ATM-a, specifične male delecije ne pokazuju učinak.[15]

Mutacije germinativnih linija i rizik od raka[uredi | uredi izvor]

Ljudi koji nose heterozigotnu ATM-mutaciju imaju povećan rizik od raka gušterače, prostate, želuca i ivazivnog duktusnog karcinoma dojke.[16] Homozigotna mutacija ATM-a izaziva bolest ataksija – telangiektazija (AT), rijetku ljudsku bolest koju karakterizira cerebelarna degeneracija, ekstremna ćelijskA osjetljivost na zračenje i predispozicija za kancer. Svi AT pacijenti sadrže mutacije u ATM genu. Većina drugih AT-sličnih poremećaja ima defekt u genima koji kodiraju kompleks proteina MRN. Jedna značajka proteina ATM je njegovo brzo povećanje aktivnosti kinaze neposredno nakon formiranja dvostrukog prekida.[17][18] Fenotipska manifestacija posljedica AT je širokog raspona supstrata za ATM-kinazu, uključujući popravak DNK, apoptoza, G1/S, intra-S kontrolnu tačku i G2/M kontrolne tačke, regulacija gena, inicijaciju translacije i održavanje telomera.[19] Stoga, kvar u ATM ima ozbiljne posljedice pri popravljanju određenih tipova oštećenja DNK, a kancer može nastati zbog nepravilnog popravljanja. AT pacijentice imaju povećan rizik od raka dojke koji se pripisuje interakciji ATM-a i fosforilaciji BRCA1 i njegovih povezanih proteina, nakon oštećenja DNK.[20]

Somatske ATM mutacije sporadičnih karcinoma[uredi | uredi izvor]

Kod sporadičnih karcinoma, mutacije u ATM genu nalaze se na relativno niskim frekvencijama. Prema COSMIC-u, Katalogu somatskih kancerogenih mutacija, učestalosti s kojima se javljaju heterozigotne mutacije u ATM-u kod uobičajenih karcinoma uključuju 0,7% kod 713 karcinoma jajnika, 0,9% kod karcinoma centralnog nervnog sistema, 1,9 % kod 1.120 dojke, 2.1% kod 847 bubrega, 4,6% kod debelog crijeva, 7.2% među 1.040 pluća i 11.1% kod 1790 karcinoma hematopoeze i limfoidnog tkiva.[21] Određene vrste leukemija i limfoma, kao što su limfom plaštanih ćelija, T-ALL, atipska hronična limfocitna leukemija B ćelija i T-PLL su takođeR povezane sa defektim ATP-a.[22] Sveobuhvatna pretraga literature o nedostatku ATM-a u karcinomu gušterače, koja je obuhvatila 5.234 pacijenta, procijenila je da je ukupna prevalencija mutacija zametnih linija ili somatskih ATM mutacija u raku gušterače 6,4%. [23] Mutacije ATM-a mogu poslužiti kao prediktivni biomarkeri odgovora na određene terapije, budući da su pretklinička istraživanja otkrila da nedostatak ATM-a može osjetiti neke tipove raka na inhibiciju ATR inhibicije.[24][25][26][27]

Česti epigenetički nedostaci ATM kod karcinoma[uredi | uredi izvor]

ATM je jedan od gena za popravak DNK, koji je često hipermetiliran u promotorskoj regiji kod različitih karcinoma. Metilacija promotora ATM -a uzrokuje smanjenu ekspresiju proteina ili iRNK ekspresijew ATM-a.

Utvrđeno je da je više od 73% tumora mozga metilirano u promotoru ATM gena, a postojala je snažna inverzna korelacija između metilacije promotora ATM i njegove ekspresije proteina (p <0,001).[28]

Uočeno je da je promotor ATM gena hipermetiliran u 53% malih (neopipljivih) karcinoma dojke[29] i bio je hipermetiliran u 78% karcinoma dojke II ili stadija s visoko značajnom korelacijom (p = 0,0006) između smanjene količine ATM-ove iRNK i aberantne metilacije promotora ATM gena.[30]

Kod raka pluća nemalih ćelija (NSCLC), stanje metilacije promotora ATM-a uparenih tumora i okolnog histološki nepogođenog plućnog tkiva bilo je 69%, odnosno 59%. Međutim, u naprednijem NSCLC-u učestalost metilacije promotora ATM bila je niža na 22%.[31] Nalaz metilacije promotora ATM-a u okolnom histološki nepogođenom plućnom tkivu sugerira da nedostatak ATM -a može biti prisutan u ranoj fazi defekata polja što dovodi do progresije u NSCLC.

Kod karcinoma pločastih ćelija glave i vrata, 42% tumora pokazalo je metilaciju promotora ATM.[32]

Oštećenje DNK javlja se kao primarni uzrok raka,[33] a nedostaci u popravljanju DNK vjerovatno su u osnovi mnogih oblika raka.[34] Ako je popravak DNK nedostatan, oštećenje DNK se nakuplja. Takva prevelika oštećenja DNK mogu povećati mutacijske greške tokom replikacije DNK zbog sklonosti greškama sinteze translezije. Višak oštećenja DNK također može povećati epigenetičke promjene zbog grešaka tokom popravka DNK.[35][36] Takve mutacije i epigenetičke promjene mogu uzrokovati rak. Česti epigeneički nedostatak ATM-a u brojnim tipovima karcinoma vjerojatno je pridonio nihovojprogresiji.

Mejoza[uredi | uredi izvor]

Funkcije ATM-a tokom mejotske profaze[37] ATM gena divljeg tipa je eksprimirju se u četiri puta povećanom nivou u ljudskim sjemenicima, u poređenju sa somatskim ćelijama (kao što su kožni fibroblasti).[38] I kod miševa i kod ljudi, nedostatak ATM-a dovodi do ženskr i muške neplodnosti. Nedostatak ekspresije ATM uzrokuje ozbiljne mejotske poremećaje tokom profaze I.[39] Osim toga, oslabljena reparacija DNK DSB posredovana ATM-om identificirana je kao vjerovatni uzrok starenja jajnih ćelija miša i ljudi.[40] Ekspresija gena ATM, kao i drugih ključnih gena za popravak DSB-a, opada s godinama u oocitima miša i ljudi, a to smanjenje je usporedo s povećanjem DSB-a u primordijalnim folikulama.[40] Ovi nalazi ukazuju da ATM- posredovana homologna rekombinacijske popravka ključnafunkcija mejoze.

Interakcije[uredi | uredi izvor]

Pokazalo se da mutirana ataksija telangiektazija ima interakciju sa:

Tefu[uredi | uredi izvor]

The Tefu protein of Drosophila melanogaster is a structural and functional homolog of the human ATM protein.[65] Tefu, like ATM, is required for DNA repair and normal levels of meiotic recombination in oocytes.

Također pogledajte[uredi | uredi izvor]

Reference[uredi | uredi izvor]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000149311 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000034218 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. (June 1995). "A single ataxia telangiectasia gene with a product similar to PI-3 kinase". Science. 268 (5218): 1749–53. Bibcode:1995Sci...268.1749S. doi:10.1126/science.7792600. PMID 7792600.
  6. ^ "Entrez Gene: ATM ataxia telangiectasia mutated (includes complementation groups A, C and D)".
  7. ^ Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, et al. (September 1998). "Enhanced phosphorylation of p53 by ATM in response to DNA damage". Science. 281 (5383): 1674–7. Bibcode:1998Sci...281.1674B. doi:10.1126/science.281.5383.1674. PMID 9733514.
  8. ^ Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. (September 1998). "Activation of the ATM kinase by ionizing radiation and phosphorylation of p53". Science. 281 (5383): 1677–9. Bibcode:1998Sci...281.1677C. doi:10.1126/science.281.5383.1677. PMID 9733515.
  9. ^ Huang X, Halicka HD, Darzynkiewicz Z (November 2004). "Detection of histone H2AX phosphorylation on Ser-139 as an indicator of DNA damage (DNA double-strand breaks)". Current Protocols in Cytometry. Chapter 7: Unit 7.27. doi:10.1002/0471142956.cy0727s30. ISBN 0-471-14295-6. PMID 18770804. S2CID 32281084.
  10. ^ Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. (September 1998). "Activation of the ATM kinase by ionizing radiation and phosphorylation of p53". Science. 281 (5383): 1677–9. Bibcode:1998Sci...281.1677C. doi:10.1126/science.281.5383.1677. PMID 9733515.
  11. ^ a b Morgan, David O. (2007). The cell cycle: Principles of Control. Oxford University Press. ISBN 978-0-19-920610-0.
  12. ^ Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, et al. (February 2012). "Mitochondrial dysfunction in ataxia-telangiectasia". Blood. 119 (6): 1490–500. doi:10.1182/blood-2011-08-373639. PMC 3286212. PMID 22144182.
  13. ^ Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, et al. (March 2016). "Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation". Cell Death & Disease. 7 (e2127): e2127. doi:10.1038/cddis.2015.409. PMC 4823927. PMID 26938301.
  14. ^ Bakkenist CJ, Kastan MB (January 2003). "DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation". Nature. 421 (6922): 499–506. Bibcode:2003Natur.421..499B. doi:10.1038/nature01368. PMID 12556884. S2CID 4403303.
  15. ^ Greška kod citiranja: Nevaljana oznaka <ref>; nije naveden tekst za reference s imenom LempiäinenHalazonetis
  16. ^ Hall, Michael J.; Bernhisel, Ryan; Hughes, Elisha; Larson, Katie; Rosenthal, Eric T.; Singh, Nanda A.; Lancaster, Johnathan M.; Kurian, Allison W. (2021). "Germline Pathogenic Variants in the Ataxia Telangiectasia Mutated (ATM) Gene are Associated with High and Moderate Risks for Multiple Cancers". Cancer Prevention Research. 14 (4): 433–440. doi:10.1158/1940-6207.CAPR-20-0448. ISSN 1940-6207. PMC 8026745. PMID 33509806.CS1 održavanje: emargo PMC-a istekao (link)
  17. ^ Canman CE, Lim DS (December 1998). "The role of ATM in DNA damage responses and cancer". Oncogene. 17 (25): 3301–8. doi:10.1038/sj.onc.1202577. PMID 9916992.
  18. ^ Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, et al. (September 1998). "Enhanced phosphorylation of p53 by ATM in response to DNA damage". Science. 281 (5383): 1674–7. Bibcode:1998Sci...281.1674B. doi:10.1126/science.281.5383.1674. PMID 9733514.
  19. ^ Kurz EU, Lees-Miller SP (2004). "DNA damage-induced activation of ATM and ATM-dependent signaling pathways". DNA Repair. 3 (8–9): 889–900. doi:10.1016/j.dnarep.2004.03.029. PMID 15279774.
  20. ^ a b Chen J (September 2000). "Ataxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage". Cancer Research. 60 (18): 5037–9. PMID 11016625.
  21. ^ Cremona CA, Behrens A (June 2014). "ATM signalling and cancer". Oncogene. 33 (26): 3351–60. doi:10.1038/onc.2013.275. PMID 23851492.
  22. ^ Friedenson B (August 2007). "The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers". BMC Cancer. 7: 152. doi:10.1186/1471-2407-7-152. PMC 1959234. PMID 17683622. SažetakScientific Video Site.
  23. ^ Armstrong SA, Schultz CW, Azimi-Sadjadi A, Brody JR, Pishvaian MJ (November 2019). "ATM Dysfunction in Pancreatic Adenocarcinoma and Associated Therapeutic Implications". Molecular Cancer Therapeutics. 18 (11): 1899–1908. doi:10.1158/1535-7163.MCT-19-0208. PMC 6830515. PMID 31676541.
  24. ^ Dunlop CR, Wallez Y, Johnson TI, Bernaldo de Quirós Fernández S, Durant ST, Cadogan EB, et al. (August 2020). "Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models". British Journal of Cancer. 123 (9): 1424–1436. doi:10.1038/s41416-020-1016-2. PMC 7591912. PMID 32741974. S2CID 220931196.
  25. ^ Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C, Petermann E, et al. (February 2016). "ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells". Blood. 127 (5): 582–95. doi:10.1182/blood-2015-05-644872. PMID 26563132.
  26. ^ Min A, Im SA, Jang H, Kim S, Lee M, Kim DK, et al. (April 2017). "AZD6738, A Novel Oral Inhibitor of ATR, Induces Synthetic Lethality with ATM Deficiency in Gastric Cancer Cells". Molecular Cancer Therapeutics. 16 (4): 566–577. doi:10.1158/1535-7163.MCT-16-0378. PMID 28138034. S2CID 34149115.
  27. ^ Vendetti FP, Lau A, Schamus S, Conrads TP, O'Connor MJ, Bakkenist CJ (December 2015). "The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo". Oncotarget. 6 (42): 44289–305. doi:10.18632/oncotarget.6247. PMC 4792557. PMID 26517239.
  28. ^ Mehdipour P, Karami F, Javan F, Mehrazin M (August 2015). "Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory". Molecular Neurobiology. 52 (1): 293–302. doi:10.1007/s12035-014-8864-9. PMID 25159481. S2CID 35412479.
  29. ^ Delmonico L, dos Santos Moreira A, Franco MF, Esteves EB, Scherrer L, Gallo CV, et al. (October 2015). "CDKN2A (p14(ARF)/p16(INK4a)) and ATM promoter methylation in patients with impalpable breast lesions". Human Pathology. 46 (10): 1540–7. doi:10.1016/j.humpath.2015.06.016. PMID 26255234.
  30. ^ Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD (December 2004). "The ATM gene is a target for epigenetic silencing in locally advanced breast cancer". Oncogene. 23 (58): 9432–7. doi:10.1038/sj.onc.1208092. PMID 15516988.
  31. ^ Safar AM, Spencer H, Su X, Coffey M, Cooney CA, Ratnasinghe LD, et al. (June 2005). "Methylation profiling of archived non-small cell lung cancer: a promising prognostic system". Clinical Cancer Research. 11 (12): 4400–5. doi:10.1158/1078-0432.CCR-04-2378. PMID 15958624.
  32. ^ Bolt J, Vo QN, Kim WJ, McWhorter AJ, Thomson J, Hagensee ME, et al. (November 2005). "The ATM/p53 pathway is commonly targeted for inactivation in squamous cell carcinoma of the head and neck (SCCHN) by multiple molecular mechanisms". Oral Oncology. 41 (10): 1013–20. doi:10.1016/j.oraloncology.2005.06.003. PMID 16139561.
  33. ^ Kastan MB (April 2008). "DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture". Molecular Cancer Research. 6 (4): 517–24. doi:10.1158/1541-7786.MCR-08-0020. PMID 18403632.
  34. ^ Harper JW, Elledge SJ (December 2007). "The DNA damage response: ten years after". Molecular Cell. 28 (5): 739–45. doi:10.1016/j.molcel.2007.11.015. PMID 18082599.
  35. ^ O'Hagan HM, Mohammad HP, Baylin SB (August 2008). "Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island". PLOS Genetics. 4 (8): e1000155. doi:10.1371/journal.pgen.1000155. PMC 2491723. PMID 18704159.
  36. ^ Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Di Pardo A, et al. (July 2007). "DNA damage, homology-directed repair, and DNA methylation". PLOS Genetics. 3 (7): e110. doi:10.1371/journal.pgen.0030110. PMC 1913100. PMID 17616978.
  37. ^ Hamer G, Kal HB, Westphal CH, Ashley T, de Rooij DG (April 2004). "Ataxia telangiectasia mutated expression and activation in the testis". Biology of Reproduction. 70 (4): 1206–12. doi:10.1095/biolreprod.103.024950. PMID 14681204.
  38. ^ Galetzka D, Weis E, Kohlschmidt N, Bitz O, Stein R, Haaf T (April 2007). "Expression of somatic DNA repair genes in human testes". Journal of Cellular Biochemistry. 100 (5): 1232–9. doi:10.1002/jcb.21113. PMID 17177185. S2CID 23743474.
  39. ^ Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K, et al. (October 1998). "Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I". Development. 125 (20): 4007–17. doi:10.1242/dev.125.20.4007. PMID 9735362.
  40. ^ a b Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, et al. (February 2013). "Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans". Science Translational Medicine. 5 (172): 172ra21. doi:10.1126/scitranslmed.3004925. PMC 5130338. PMID 23408054.
  41. ^ a b Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B, et al. (April 1999). "Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl". The Journal of Biological Chemistry. 274 (18): 12748–52. doi:10.1074/jbc.274.18.12748. PMID 10212258.
  42. ^ a b Kishi S, Zhou XZ, Ziv Y, Khoo C, Hill DE, Shiloh Y, Lu KP (August 2001). "Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks". The Journal of Biological Chemistry. 276 (31): 29282–91. doi:10.1074/jbc.M011534200. PMID 11375976.
  43. ^ Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T, et al. (May 1997). "Interaction between ATM protein and c-Abl in response to DNA damage". Nature. 387 (6632): 520–3. Bibcode:1997Natur.387R.520S. doi:10.1038/387520a0. PMID 9168117. S2CID 4334242.
  44. ^ a b c d e f g Kim ST, Lim DS, Canman CE, Kastan MB (December 1999). "Substrate specificities and identification of putative substrates of ATM kinase family members". The Journal of Biological Chemistry. 274 (53): 37538–43. doi:10.1074/jbc.274.53.37538. PMID 10608806.
  45. ^ a b c d Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (April 2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes & Development. 14 (8): 927–39. doi:10.1101/gad.14.8.927 (neaktivno 31 May 2021). PMC 316544. PMID 10783165.CS1 održavanje: DOI nije aktivan od maj 2021 (link)
  46. ^ Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, Khanna KK (June 2000). "Role for ATM in DNA damage-induced phosphorylation of BRCA1". Cancer Research. 60 (12): 3299–304. PMID 10866324.
  47. ^ Cortez D, Wang Y, Qin J, Elledge SJ (November 1999). "Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks". Science. 286 (5442): 1162–6. doi:10.1126/science.286.5442.1162. PMID 10550055.
  48. ^ Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, Abraham RT (December 2000). "Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress". Genes & Development. 14 (23): 2989–3002. doi:10.1101/gad.851000. PMC 317107. PMID 11114888.
  49. ^ Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK (May 2001). "Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies" (PDF). The Journal of Biological Chemistry. 276 (20): 17276–80. doi:10.1074/jbc.M011681200. PMID 11278964. S2CID 43554268.
  50. ^ Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C, et al. (August 2002). "Functional link between BLM defective in Bloom's syndrome and the ataxia-telangiectasia-mutated protein, ATM". The Journal of Biological Chemistry. 277 (34): 30515–23. doi:10.1074/jbc.M203801200. PMID 12034743.
  51. ^ Suzuki K, Kodama S, Watanabe M (September 1999). "Recruitment of ATM protein to double strand DNA irradiated with ionizing radiation". The Journal of Biological Chemistry. 274 (36): 25571–5. doi:10.1074/jbc.274.36.25571. PMID 10464290.
  52. ^ Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST, et al. (May 2002). "Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways". Cell. 109 (4): 459–72. doi:10.1016/s0092-8674(02)00747-x. PMID 12086603. S2CID 16580666.
  53. ^ Reuter TY, Medhurst AL, Waisfisz Q, Zhi Y, Herterich S, Hoehn H, et al. (October 2003). "Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport". Experimental Cell Research. 289 (2): 211–21. doi:10.1016/s0014-4827(03)00261-1. PMID 14499622.
  54. ^ Kang J, Ferguson D, Song H, Bassing C, Eckersdorff M, Alt FW, Xu Y (January 2005). "Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression". Molecular and Cellular Biology. 25 (2): 661–70. doi:10.1128/MCB.25.2.661-670.2005. PMC 543410. PMID 15632067.
  55. ^ Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, Khanna KK (July 2004). "BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage". The Journal of Biological Chemistry. 279 (30): 31251–8. doi:10.1074/jbc.M405372200. PMID 15159397.
  56. ^ Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, et al. (December 1998). "ATM associates with and phosphorylates p53: mapping the region of interaction". Nature Genetics. 20 (4): 398–400. doi:10.1038/3882. PMID 9843217. S2CID 23994762.
  57. ^ Westphal CH, Schmaltz C, Rowan S, Elson A, Fisher DE, Leder P (May 1997). "Genetic interactions between atm and p53 influence cellular proliferation and irradiation-induced cell cycle checkpoints". Cancer Research. 57 (9): 1664–7. PMID 9135004.
  58. ^ Bao S, Tibbetts RS, Brumbaugh KM, Fang Y, Richardson DA, Ali A, et al. (June 2001). "ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses". Nature. 411 (6840): 969–74. Bibcode:2001Natur.411..969B. doi:10.1038/35082110. PMID 11418864. S2CID 4429058.
  59. ^ Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, et al. (July 2000). "Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response". Nature. 406 (6792): 210–5. Bibcode:2000Natur.406..210L. doi:10.1038/35018134. PMID 10910365. S2CID 3266654.
  60. ^ Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (April 2005). "Rheb binds and regulates the mTOR kinase". Current Biology. 15 (8): 702–13. doi:10.1016/j.cub.2005.02.053. PMID 15854902. S2CID 3078706.
  61. ^ Chang L, Zhou B, Hu S, Guo R, Liu X, Jones SN, Yen Y (November 2008). "ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage". Proceedings of the National Academy of Sciences of the United States of America. 105 (47): 18519–24. Bibcode:2008PNAS..10518519C. doi:10.1073/pnas.0803313105. PMC 2587585. PMID 19015526.
  62. ^ Kim ST, Xu B, Kastan MB (March 2002). "Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage". Genes & Development. 16 (5): 560–70. doi:10.1101/gad.970602. PMC 155347. PMID 11877376.
  63. ^ Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, et al. (December 2002). "DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1". Nature Cell Biology. 4 (12): 993–7. doi:10.1038/ncb884. PMID 12447390. S2CID 12380387.
  64. ^ Ward IM, Minn K, Jorda KG, Chen J (May 2003). "Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX". The Journal of Biological Chemistry. 278 (22): 19579–82. doi:10.1074/jbc.C300117200. PMID 12697768.
  65. ^ Oikemus SR, McGinnis N, Queiroz-Machado J, Tukachinsky H, Takada S, Sunkel CE, Brodsky MH (August 2004). "Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect". Genes & Development. 18 (15): 1850–61. doi:10.1101/gad.1202504. PMC 517405. PMID 15256487.

Dopunska literatura[uredi | uredi izvor]

Vanjski link0vi[uredi | uredi izvor]

Kategoprija:Enzimi