Cotlar–Steinova lema

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web-stranice ili drugi izvori).
Ako se pravilno ne potkrijepe validnim izvorima, sporne rečenice i navodi mogli bi biti obrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.

U matematici, u oblasti funkcionalne analize, Cotlar–Steinova lema skore ortogonalnosti, koja je naziv dobila po matematičarima Mischai Cotlaru i Eliasu Steinu. Može se koristiti za dobijanje informacija o operatorskoj normi operatora, koji djeluje iz jednog Hilbertovog prostora u drugi, kada se operator može razložiti u skoro ortogonalne dijelove.

Originalnu verziju ove leme (za samopridružene i međusobno komutativne operatore) dokazao je Mischa Cotlar 1955. godine, što ga je dovelo do zaključka da je Hilbertova transformacija neprekidni linearni operator u , bez korištenja Fourierove transformacije.

Cotlar–Steinova lema skore ortogonalnosti[uredi | uredi izvor]

Neka budu dva Hilbertova prostora. Razmotrimo familiju operatora , , gdje je svaki neprekidni linearni operator iz u .

Naznačimo

Familija operatora , je skoro ortogonalna ako je

Cotlar-Steinova lema kaže da ako je skoro ortogonalno, tada red konvergira u topologiji jakog operatora, i da je

Primjer[uredi | uredi izvor]

Slijedi primjer ortogonalne familije operatora. Razmotrimo matrice beskonačnih dimenzija

i, također

Tada je za svako , odakle slijedi da red ne konvergira u topologiji uniformnog operatora.

Ipak, pošto je i za , Cotlar-Steinova lema skore ortogonalnosti govori nam da

konvergira u topologiji jakog operatora, te da je ograničen sa 1.

Reference[uredi | uredi izvor]

  • Mischa Cotlar, A combinatorial inequality and its application to spaces, Math. Cuyana 1 (1955), 41-55
  • Elias Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, 1993. ISBN 0-691-03216-5

Vanjski linkovi[uredi | uredi izvor]