Gram-Schmidtov postupak

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web stranice ili drugi izvori).
Sporne rečenice i navodi bi mogli, ukoliko se pravilno ne označe validnim izvorima, biti obrisani i uklonjeni. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci, te nakon toga možete ukloniti ovaj šablon.
Wiki letter w.svg Ovaj članak je siroče zato što nema ili vrlo malo ima drugih članaka koji linkuju ovamo.
Molimo Vas da postavite linkove prema ovoj stranici sa srodnih članaka(23-02-2012)

Gram-Schmidtov postupak je metoda u linearnoj algebri koja služi za ortogonalizaciju skupa vektora u zadanom euklidskom prostoru.

Postupak je sljedeći: Uzmimo na primjer vektorski prostor proizvoljne dimenzije Rn baze {v1, v2, ... ,vn}, Gram-Schmidtovim postupkom ortogonalizacije možemo transformirati bazu {vi} u ortonormiranu bazu, {ui}. Prvo normaliziramo v1: u1=v1/||v1||.

Nakon toga izračunavamo:w2=v2-<v2,u1>u1, pa normaliziramo w2: u2=w2/||w2||

Ovaj postupak primjenimo za sve vektore iz baze {vi}: wi+1=vi+1-<vi+1,uiui>- ... - <vi+1,u1>u1 i ui+1=wi+1/||wi+1||. Vektori {u1, ... ,vn} su linearno nezavisni, i stoga čine bazu vektorskog prostora Rn.

Primjer[uredi | uredi izvor]

Uzmimo sljedeći skup vektora u Rn (sa uobičajenim skalarnim produktom)

S = \left\lbrace\mathbf{v}_1=\begin{pmatrix} 3 \\ 1\end{pmatrix}, \mathbf{v}_2=\begin{pmatrix}2 \\2\end{pmatrix}\right\rbrace.

Sad primjenimo Gram-Schmidtov postupak kako bismo dobili ortogonalni skup vektora:

\mathbf{u}_1=\mathbf{v}_1=\begin{pmatrix}3\\1\end{pmatrix}
 \mathbf{u}_2 = \mathbf{v}_2 - \mathrm{proj}_{\mathbf{u}_1} \, \mathbf{v}_2 = \begin{pmatrix}2\\2\end{pmatrix} - \mathrm{proj}_{({3 \atop 1})} \, {\begin{pmatrix}2\\2\end{pmatrix}} = \begin{pmatrix} -2/5 \\6/5 \end{pmatrix}.

Provjerimo vektore u1 i u2 kako bismo utvrdili da su zaista ortogonalni:

\langle\mathbf{u}_1,\mathbf{u}_2\rangle = \left\langle \begin{pmatrix}3\\1\end{pmatrix}, \begin{pmatrix}-2/5\\6/5\end{pmatrix} \right\rangle = -\frac65 + \frac65 = 0.

Sada ih možemo normalizirati, tako što ćemo ih podijeliti s njihovim dužinama:

Prvi koraci Gram-Schmidtovog postupka.
\mathbf{e}_1 = {1 \over \sqrt {10}}\begin{pmatrix}3\\1\end{pmatrix}
\mathbf{e}_2 = {1 \over \sqrt{40 \over 25}} \begin{pmatrix}-2/5\\6/5\end{pmatrix}
 = {1\over\sqrt{10}} \begin{pmatrix}-1\\3\end{pmatrix}.