Molekularna sistematika

S Wikipedije, slobodne enciklopedije
Jump to navigation Jump to search
Preferences-system.svg Ovom članku potrebna je jezička standardizacija, preuređivanje ili reorganizacija.
Pogledajte kako poboljšati članak, kliknite na link uredi i doradite članak vodeći računa o standardima Wikipedije.
Gnome-edit-clear.svg Ovaj članak zahtijeva čišćenje.
Molimo Vas da pomognete u poboljšavanju članka pišući ili ispravljajući ga u enciklopedijskom stilu.
Spelling icon.svg Moguće je da ovaj članak ne poštuje standarde Wikipedije na bosanskom jeziku
kao što su upotreba afrikata, pravopis, pisanje riječi u skladu sa standardima, te način pisanja članaka.

Molekularna filogenija je grana filogenije kojia analizira nasljedne molekularne razlike, uglavnom u DNK, za dobijanje informacija o evolucijskim putevima, vezama i odnosima organizama. Rezultati molekularne filogenetičke analiza se izražavaju u konstrukciji filogenetskog stabla. Molekularna filogenija je jedan aspekt molekularne sistematike, širi pojam koji uključuje i upotrebu molekularnih podataka u taksonomiji i biogeografiji.

Historija[uredi | uredi izvor]

Teorijski okviri za molekularnu sistematiku su postavljeni u 1960-ih, u radovima Emila Zuckerlandla, Emanuela Margoliasha, Linusa Paulinga i Waltera M. Fitcha.[1] Pioniri aplikacija molekularne sistematike su bili Charles Sibley (ptice ), Herbert C. Dessauer (herpetologija) i Morris Goodman (primati), zatim Allan Wilson, Robert K. Selander i John C. Avise (koji je studirao različite grupe). Rad sa elektroforezom proteina je počeo oko 1956. Iako rezultati nisu bili kvantitativni i u početku nisu poboljšali morfološke klasifikacije, dali su primamljive naznake da je za dugo održavano poimanje klasifikacije ptica, naprimjer, potrebna značajna revizija. U periodu od 1974.-1986, bila je dominantna tehnika zvana DNK-DNK hibridizacija.[2]

Tehnike i aplikacije[uredi | uredi izvor]

Svaki živi organizam sadrži DNK, RNK i proteine. U principu , organizmi u uskoj vezi imaju visok stepen saglasnosti u molekulskoj strukturi ovih supstanci, dok molekule srodnih organizama obično ispoljavaju određene obrasce različitosti. Očekivanje da će konzervirane sekvence, kao što je mitohondrijskska DNK, akumulirati mutacije tokom vremena, a pod pretpostavkom konstantne stopie mutacija, daje molekularni sat za datiranje divergencije. Molekularna filogenija koristi takve podatke da se izgradi "stablo odnosa" koji pokazuje vjerovatnu evoluciju različitih organizama. Sa pronalaskom Sangerovog sekvenciranja DNK 1977. godine postalo je moguće izolirati i identificirati ove molekulske strukture.[3][4]

Najčešći pristup je poređenje homolognih sekvenci gena pomoću tehnike usklađivanja sekvenci za identifikaciju sličnosti. Još jedna primjena molekularne filogenije je u DNK barkodiranje, pri čemu se vrsta pojedinih organizama identificira pomoću male sekcije mitohondrijske ili hloroplastne DNK. Primjena ovih tehnika može se vidjeti u vrlo ograničenoj oblasti genetike čovjeka, kao što je sve popularnije genetičko testiranje kako bi se utvrdilo nečije roditeljstvo, kao i novi ogranak krivične forenzike koja je fokusirana na dokaze koji su poznati kao genetički otisak prstiju.

Sveobuhvatni korak-po-korak protokol u izgradnji filogenetskog stabla, uključujući i poravnanja DNK / aminokiselinskih multiplih sekvenci, višestruko poravnanje sekvenci, test-modele (testirane najbolje prilagođene modele supstitucij) i rekonstrukciju filogenije koristeći maksimalnu vjerovatnoću I test Bastovskog zaključivanja dostupan je u Protokolu prirode (Nature Protocol)[5]

Teorijska osnova[uredi | uredi izvor]

Rani pokušaji molekularne sistematike se nazivaju hemotaksonomija, a koristili su proteine, enzime, ugljikohidrate i druge molekule koje su izdvojene i karakterizirane koristeći tehnike kao što je hromatografija. Ovi su u posljednje vrijeme u velikoj mjeri zamijenjeni DNK analizom, koja se bavi tačannom iderntifikacijom sekvenci nukleotida ili baza u sekvencama DNK ili RNK ekstrahiranih pomoću različitih tehnika. U principu, oni se smatraju superiornim, za evolucijski studije, jer se djelovanje evolucije u konačnici odražava na genetičke sekvence.[6]Danas je još uvijek dug i skup proces sekvencioniranja cijelokupne DNK organizma (genoma). Međutim, sasvim je moguće da se utvrdi redoslijed definisanog prostora određenog hromosoma. Tipske molekularno-sistematske analize zahtijevaju poznavanje redosleda od oko 1.000 parova baza. Na bilo kojem lokusu, određena sekvenca baza koje nalaze u datom položaju može se razlikovati između organizama. Posebna sekvenca pronađena u datom organizmu se naziva njegov haplotip. U principu, jer postoje četiri vrste baze, od 1.000 parova, može se dobiti 41000 različitih haplotipova. Međutim, za organizme unutar pojedine vrste ili u grupi povezanih vrsta, empirijski je utvrđeno da samo manjina lokusa ne pokazuje nikakve varijacije uopće i većina varijacija je u korelaciji, tako da je broj nađenih različitih haplotipova je relativno mali.[7]

U molekularno-sistematskoj analizi, haplotipovi se utvrđuju na određenom području genetičkog materijala. Zato se koriste značajni uzorci jedinki ciljne vrste ili drugih taksona , ali mnoge sadašnji studije se temelje na jednoj individui. Tako su nađeni i haplotipovi blisko povezanih jedinki različitih taksona. Konačno, određeni su haplotipovi manjeg broja jedinki iz definitivno različitih taksona: ovi su navedeni kao vanjske grupe. Tada su poređene sekvence baza u haplotipu. U najjednostavnijem slučaju, razlika između dva haplotipa se procjenjuje brojanjem lokusa na kojima imaju različite baze: ovo se naziva broj zamjena (druge vrste razlika između haplotipova može doći, na primjer je insercije (umetanja) jednog dijela nukleinskih kiselina u jedan haplotip koji nije prisutan u drugom). Razlika između organizama obično se ponovno izražavaju kao postotak odstupanja , tako što je broj zamena po broju analiziranih parova baza. Nadati se da će ova mjera biti nezavisna od lokacije i dužinu dijela DNK koji je sekvenciran.

Starija i zamijenjeni pristup je bio da se utvrdi razlika između genotipova jedinki prema DNK-DNK hibridizaciji. Tvrdilo se da je rednost korištenje hibridizacije, a ne sekvenciranje gena bazirano na cijelom genotipu, a ne na pojedinim dijelovima DNK. Moderne tehnike poređenja sekvenci, prevazilaze ovaj prigovor upotrebom više sekvenci.

Kada se utvrde razlike između svih parova uzoraka, rezultirajuća trokuglasta matrica razlikâ se odnosi na neki oblik statističke analize klastera, a kao rezultat se dobije dendrogram koji se ispituje kako bi se vidjelo da li su uzorci klastera raspoređeni na očekivani nači, prema polaznoj ideji o taksonomiji grupe, ili ne. Za svaku grupu haplotipova koji su sve sličniji jedni drugima nego bilo koji od njih je kada se poredi sa bilo kojim drugim haplotipom se može reći da predstavlja kladus. Raznim Statističkim tehnikama može se procjeniti pouzdanosti pozicije haplotipa u evolucijskim stablu.

Ograničenja molekularne sistematike[uredi | uredi izvor]

Molekularna sistematika je u osnovi ima kladistički pristup: ona pretpostavlja da klasifikacija mora odgovarati filogenetskom poreklu, i to da svi važećih taksoni moraju biti monofiletski.

Nedavno otkriće opsežnih horizontalnih prijenosa gena među organizmima, zadaje značajne komplikacije molekularnoj sistematici, ukazujući na to da različiti geni unutar istog organizam mogu imati različitui filogeniju.

Osim toga, molekularna filogenija je osjetljiva na pretpostavke i modele na kojima počiva. Oni se suočavaju sa problemima kao što su atrakcija dugih grana, zasićenost i problem uzimanja uzoraka takson. To znači da se, primjenom različitih modela , mogu dobiti upadljivo različiti rezultati za isti skup podataka .[8]

Reference[uredi | uredi izvor]

  1. ^ Suárez-Díaz, Edna and Anaya-Muñoz, Victor H. (2008). "History, objectivity, and the construction of molecular phylogenies". Stud. Hist. Phil. Biol. & Biomed. Sci. 39 (4): 451–468. PMID 19026976. doi:10.1016/j.shpsc.2008.09.002. 
  2. ^ Ahlquist, Jon E. (1999). "Charles G. Sibley: A commentary on 30 years of collaboration". The Auk 116 (3): 856–860. doi:10.2307/4089352. 
  3. ^ Sanger F, Coulson AR (May 1975). "A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase". J. Mol. Biol. 94 (3): 441–8. PMID 1100841. doi:10.1016/0022-2836(75)90213-2. 
  4. ^ Sanger F, Nicklen S, Coulson AR (December 1977). "DNA sequencing with chain-terminating inhibitors". Proc. Natl. Acad. Sci. U.S.A. 74 (12): 5463–7. Bibcode:1977PNAS...74.5463S. PMC 431765. PMID 271968. doi:10.1073/pnas.74.12.5463. 
  5. ^ Bast, F. 2013. Sequence Similarity Search, Multiple Sequence Alignment, Model Selection, Distance Matrix and Phylogeny Reconstruction. Nature Protocol Exchange. doi: 10.1038/protex.2013.065
  6. ^ Hadžiselimović R. (2005). Bioantropologija – Biodiverzitet recentnog čovjeka. Institut za genetičko inženjerstvo i biotehnologiju (INGEB), Sarajevo. ISBN 9958-9344-2-6. 
  7. ^ Hadžiselimović R., Pojskić N. (2005). Uvod u humanu imunogenetiku. Institut za genetičko inženjerstvo i biotehnologiju (INGEB), Sarajevo. ISBN 9958-9344-3-4. 
  8. ^ Philippe, H.; Brinkmann, H.; Lavrov, D. V.; Littlewood, D. T. J.; Manuel, M.; Wörheide, G.; Baurain, D. (2011). Penny, David, ur. "Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough". PLoS Biology 9 (3): e1000602. PMC 3057953. PMID 21423652. doi:10.1371/journal.pbio.1000602. 

Vanjski linkovi[uredi | uredi izvor]