Razlika između verzija stranice "Germanij"

S Wikipedije, slobodne enciklopedije
[pregledana izmjena][pregledana izmjena]
Uklonjeni sadržaj Dodani sadržaj
No edit summary
No edit summary
Red 118: Red 118:
Pod standardnim uslovima, germanij je krt, srebrenasto-bijeli, polumetalni element.<ref name="nbb"/> Ovaj oblik germanija sačinjava [[Alotropske modifikacije|alotropska modifikacija]], tehnički poznata kao ''α-germanij'', koji ima metalni sjaj i dijamantsku [[Kubični kristalni sistem|kubičnu]] [[Kristalna struktura|kristalnu strukturu]], istu kao i [[dijamant]].<ref name="usgs" /> Pri pritisku iznad 120 kbar, formira se različiti alotrop poznat kao ''β-germanij'', koji ima istu strukturu kao i β-[[kalaj]].<ref name="HollemanAF"/> Pored [[silicij]]a, [[galij]]a, [[bizmut]]a, [[antimon]]a i [[voda|vode]], on je jedna od malobrojnih supstanci koja se širi kada prelazi iz svoje tečne faze u čvrsto stanje.<ref name="HollemanAF"/>
Pod standardnim uslovima, germanij je krt, srebrenasto-bijeli, polumetalni element.<ref name="nbb"/> Ovaj oblik germanija sačinjava [[Alotropske modifikacije|alotropska modifikacija]], tehnički poznata kao ''α-germanij'', koji ima metalni sjaj i dijamantsku [[Kubični kristalni sistem|kubičnu]] [[Kristalna struktura|kristalnu strukturu]], istu kao i [[dijamant]].<ref name="usgs" /> Pri pritisku iznad 120 kbar, formira se različiti alotrop poznat kao ''β-germanij'', koji ima istu strukturu kao i β-[[kalaj]].<ref name="HollemanAF"/> Pored [[silicij]]a, [[galij]]a, [[bizmut]]a, [[antimon]]a i [[voda|vode]], on je jedna od malobrojnih supstanci koja se širi kada prelazi iz svoje tečne faze u čvrsto stanje.<ref name="HollemanAF"/>


Germanij je poluprovodnik. Tehnike zonskog rafiniranja su dovele do proizvodnje kristalnog germanija pogodnog za poluprovodnike, u kojem su sadržan nečistoće u udjelu od 1 naprema 10<sup>10</sup>,<ref name="lanl" />, što se smatra jednim od najčistijih materijala ikad proizvedenih.<ref name="darkmat" /> Prvi metalni materijal, otkriven 2005. godine, koji je postao superprovodnik u prisustvu izuzetno snažnog [[Elektromagnetno polje|elektromagnetnog polja]] bila je legura germanija sa uranijem i rodijem.<ref name="levy" /> Za čisti germanij je primijećeno da se spontano izdužuje u veoma duge uvijene [[dislokacija|dislokacije]]. One su jedan od osnovnih razloga zašto se stare diode i tranzistori načinjeni od germanija kvare, a ako se takvi predmeti dodirnu, mogu izazvati i kratki spoj.
Germanij je poluprovodnik. Tehnike zonskog rafiniranja su dovele do proizvodnje kristalnog germanija pogodnog za poluprovodnike, u kojem su sadržan nečistoće u udjelu od 1 naprema 10<sup>10</sup>,<ref name="lanl" />, što se smatra jednim od najčistijih materijala ikad proizvedenih.<ref name="darkmat" /> Prvi metalni materijal, otkriven 2005. godine, koji je postao superprovodnik u prisustvu izuzetno snažnog [[Elektromagnetno polje|elektromagnetnog polja]] bila je legura germanija sa uranijem i rodijem.<ref name="levy" /> Za čisti germanij je primijećeno da se spontano izdužuje u veoma duge uvijene [[dislokacija|dislokacije]]. One su jedan od osnovnih razloga zašto se kvare stare diode i tranzistori načinjeni od germanija, a ako se takvi predmeti dodirnu, mogu izazvati i kratki spoj.

=== Hemijske ===
Elementarni germanij vrlo sporo oksidira do [[germanij dioksid|GeO<sub>2</sub>]] pri 250&nbsp;°C.<ref name="krxps" /> Germanij ne otapaju razrijeđene kiseline i baze, ali se sporo otapa u koncentriranoj [[sumporna kiselina|sumpornoj kiselini]] a burno reagira sa istopljenim [[baza (hemija)|bazama]] dajući germanate ({{chem|[GeO|3|]|2−}}). Germanij se javlja uglavnom u [[oksidacijsko stanje|oksidacijskom stanju]] +4, mada je poznat veliki broj njegovih spojeva sa oksidacijskim brojem +2.<ref name="greenwood"/> Druga oksidacijska stanja su rijetka, poput +3 koje je dokazano u spoju kao što je Ge<sub>2</sub>Cl<sub>6</sub>, a stanja +3 i +1 su pronađena na površinama oksida,<ref name="xpsstudy" /> ili negativna oksidacijska stanja u germanatim, kao što je -4 u {{chem|GeH|4}}. Klaster anioni germanija ([[Zintl faza|Zintl]] ioni) poput Ge<sub>4</sub><sup>2−</sup>, Ge<sub>9</sub><sup>4−</sup>, Ge<sub>9</sub><sup>2−</sup>, [(Ge<sub>9</sub>)<sub>2</sub>]<sup>6−</sup> su dobijeni izdvajanjem iz [[legura]] koje sadrže alkalne metale i germanij u tečnom amoniju u prisustvu [[etilendiamin]]a ili [[kriptand]]a.<ref name = "greenwood"/><ref name="Coupling" /> Oksidacijska stanja elementa u ovim ionima nisu jednaka cijelom broju, slično kao kod spojeva [[ozon]]a O<sub>3</sub><sup>−</sup>.


== Izotopi ==
== Izotopi ==
Red 144: Red 147:
<ref name="darkmat">{{cite book |title=The Primordial Universe: 28 June – 23 July 1999|author=Chardin, B. Binetruy, B (ur.) |chapter=Dark Matter: Direct Detection |publisher=Springer |year=2001 |isbn=3-540-41046-5}}, str. 308</ref>
<ref name="darkmat">{{cite book |title=The Primordial Universe: 28 June – 23 July 1999|author=Chardin, B. Binetruy, B (ur.) |chapter=Dark Matter: Direct Detection |publisher=Springer |year=2001 |isbn=3-540-41046-5}}, str. 308</ref>
<ref name="HollemanAF">{{cite book|last = Holleman|first = A. F.; Wiberg, E.; Wiberg, N.|title=Lehrbuch der Anorganischen Chemie, 102. izd.|publisher=de Gruyter|year=2007|isbn=978-3-11-017770-1}}</ref>
<ref name="HollemanAF">{{cite book|last = Holleman|first = A. F.; Wiberg, E.; Wiberg, N.|title=Lehrbuch der Anorganischen Chemie, 102. izd.|publisher=de Gruyter|year=2007|isbn=978-3-11-017770-1}}</ref>
<ref name="krxps">{{cite journal|title=KRXPS study of the oxidation of Ge(001) surface|year=1998|author=Tabet, N; Salim Mushtaq A.|journal=Applied Surface Science|volume=134|issue=1–4|page=275}} {{doi|10.1016/S0169-4332(98)00251-7}} </ref>
<ref name="xpsstudy">{{cite journal|title=XPS study of the growth kinetics of thin films obtained by thermal oxidation of germanium substrates||author=Tabet, N; A.L Al-Oteibi; M.A Salim|year=1999|journal=Journal of Electron Spectroscopy and Related Phenomena|volume=101–103|page=233}}</ref>
<ref name="Coupling">{{cite journal|title=Oxidative Coupling of Deltahedral [Ge<sub>9</sub>]<sup>4−</sup> Zintl Ions|first = Li; Sevov Slavi C.|last = Xu|journal=J. Am. Chem. Soc.|year = 1999|volume = 121| issue = 39|pages = 9245–9246}} {{doi|10.1021/ja992269s}}</ref>
}}
}}



Verzija na dan 1 juli 2014 u 14:02

Šablon:Infokutija Hemijski element Germanij (lat. germanium) jeste hemijski element sa simbolom Ge i atomskim brojem 32. On je sjajni, tvrdi, sivo-bijeli polumetal iz grupe ugljika, hemijski sličan svojim komšijama iz IV glavne grupe periodnog sistema elemenata kalaja i silicija. Čisti elementarni germanij je poluprovodnik, izgledom najviše sliči elementarnom siliciju. Poput silicija, germanij vrlo lahko reagira i sa kisikom iz prirode gradi komplekse. Za razliku od silicija, on je isuviše reaktivan da bi se prirodno našao na Zemlji u svom elementarnom stanju.

Pošto postoji vrlo mali broj minerala koji ga sadrže u visokim koncentracijama, germanij je otkriven relativno kasno u historiji hemije. Među elementima po rasprostranjenosti u Zemljinoj kori, on se nalazi približno na 50. mjestu. Ruski hemičar Dmitrij Mendeljejev je 1869. godine predvidio njegovo postojanje i neke od njegovih osobina na osnovu mjesta u periodnom sistemu kojeg je Mendeljejev kreirao. Dao mi je ekasilicij. Gotovo dva desetljeća kasnije, 1886. godine, Clemens Winkler je otkrio novi element, kao pratioca srebra i sumpora u rijetkom mineralu nazvanom argirodit. Mada je novi element izgledom na neki način imao sličnosti sa arsenom i antimonom, njegovi kombinirani odnosi u spojevima novog elementa su bili u saglasnosti sa Mendeljejevijim predviđanjima u odnosu na silicij. Winkler je novom elementu dao ime po imenu svoje domovine, Njemačke. Danas se germanij uglavnom izdvaja iz sfalerita (osnovne rude cinka), mada se često industrijski izdvaja i iz ruda srebra, olova i bakra.

Metalni germanij (izolirani elementarni) se koristi kao poluprovodnik u tranzistorima i različitim elektronskim uređajima. U prošlosti, cijela generacija prvobitnih elektronskih poluprovodnika je potpuno bila zasnovana na germaniju. Međutim, danas na njegovu proizvodnju u svrhu poluprovodnika otpada vrlo mali udio (2%) umjesto ultra čistog silicija, koji je uglavnom zamijenio germanij. U današnje doba, glavni potrošači germanija su sistemi za optička vlakna, optički uređaji za infracrveni dio spektra i aplikacije za solarne ćelije. Spojevi germanija se koriste kao katalizatori za reakcije polimerizacije a odnedavno se koriste i za proizvodonju nanožica. Ovaj element gradi veliki broj organometalnih spojeva, kao što je tetraetilgermanij, vrlo koristan u organometalnoj hemiji. Germanij se ne smatra da je neophodan element za bilo koji živi organizam. Neki kompleksni organo-germanijevi spojevi su bili istraživani kao mogući preparati u farmaciji, međutim nijedan se nije pokazao uspješnim. Slično kao i silicij i aluminij, prirodni spojevi germanija su većinom nerastvorljivi u vodi, te stoga nisu isuviše otrovni. Međutim, sintetički dobijene rastvorljive soli germanija su se pokazale da djeluju kao nefrotoksin, dok su vještački, hemijski reaktivni spojevi germanija sa halogenim elementima i vodikom iritirajući i otrovni.

Osobine

Polikristalni germanij, težine 12 grama, veličina 2x3 cm

Pod standardnim uslovima, germanij je krt, srebrenasto-bijeli, polumetalni element.[1] Ovaj oblik germanija sačinjava alotropska modifikacija, tehnički poznata kao α-germanij, koji ima metalni sjaj i dijamantsku kubičnu kristalnu strukturu, istu kao i dijamant.[2] Pri pritisku iznad 120 kbar, formira se različiti alotrop poznat kao β-germanij, koji ima istu strukturu kao i β-kalaj.[3] Pored silicija, galija, bizmuta, antimona i vode, on je jedna od malobrojnih supstanci koja se širi kada prelazi iz svoje tečne faze u čvrsto stanje.[3]

Germanij je poluprovodnik. Tehnike zonskog rafiniranja su dovele do proizvodnje kristalnog germanija pogodnog za poluprovodnike, u kojem su sadržan nečistoće u udjelu od 1 naprema 1010,[4], što se smatra jednim od najčistijih materijala ikad proizvedenih.[5] Prvi metalni materijal, otkriven 2005. godine, koji je postao superprovodnik u prisustvu izuzetno snažnog elektromagnetnog polja bila je legura germanija sa uranijem i rodijem.[6] Za čisti germanij je primijećeno da se spontano izdužuje u veoma duge uvijene dislokacije. One su jedan od osnovnih razloga zašto se kvare stare diode i tranzistori načinjeni od germanija, a ako se takvi predmeti dodirnu, mogu izazvati i kratki spoj.

Hemijske

Elementarni germanij vrlo sporo oksidira do GeO2 pri 250 °C.[7] Germanij ne otapaju razrijeđene kiseline i baze, ali se sporo otapa u koncentriranoj sumpornoj kiselini a burno reagira sa istopljenim bazama dajući germanate ([GeO3]2−). Germanij se javlja uglavnom u oksidacijskom stanju +4, mada je poznat veliki broj njegovih spojeva sa oksidacijskim brojem +2.[8] Druga oksidacijska stanja su rijetka, poput +3 koje je dokazano u spoju kao što je Ge2Cl6, a stanja +3 i +1 su pronađena na površinama oksida,[9] ili negativna oksidacijska stanja u germanatim, kao što je -4 u GeH4. Klaster anioni germanija (Zintl ioni) poput Ge42−, Ge94−, Ge92−, [(Ge9)2]6− su dobijeni izdvajanjem iz legura koje sadrže alkalne metale i germanij u tečnom amoniju u prisustvu etilendiamina ili kriptanda.[8][10] Oksidacijska stanja elementa u ovim ionima nisu jednaka cijelom broju, slično kao kod spojeva ozona O3.

Izotopi

Ima nekoliko izotopa čije se atomske mase nalaze između 64-83. Postojano je pet: 70, 72, 73, 74 i 76.

Zastupljenost

Zastupljen je u zemljinoj kori u količini od 1,8 ppm (eng. parts per million), kao pratilac ruda cinka i bakra.

Također pogledajte

Reference

  1. ^ Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. str. 506–510. ISBN 0-19-850341-5.
  2. ^ U.S. Geological Survey (2008). "Germanium—Statistics and Information". U.S. Geological Survey, Mineral Commodity Summaries. Pristupljeno 28.8.2008. Provjerite vrijednost datuma u parametru: |accessdate= (pomoć)CS1 održavanje: nepreporučeni parametar (link)
  3. ^ a b Holleman, A. F.; Wiberg, E.; Wiberg, N. (2007). Lehrbuch der Anorganischen Chemie, 102. izd. de Gruyter. ISBN 978-3-11-017770-1.
  4. ^ "Germanium". Nepoznati parametar |pristupdatum= zanemaren (pomoć); Nepoznati parametar |izdavač= zanemaren (pomoć)
  5. ^ Chardin, B. Binetruy, B (ur.) (2001). "Dark Matter: Direct Detection". The Primordial Universe: 28 June – 23 July 1999. Springer. ISBN 3-540-41046-5.CS1 održavanje: više imena: authors list (link), str. 308
  6. ^ Lévy, F. (august 2005). "Magnetic field-induced superconductivity in the ferromagnet URhGe". Science. 309 (5739): 1343–1346. Nepoznati parametar |coauthors= zanemaren (prijedlog zamjene: |author=) (pomoć)
  7. ^ Tabet, N; Salim Mushtaq A. (1998). "KRXPS study of the oxidation of Ge(001) surface". Applied Surface Science. 134 (1–4): 275.CS1 održavanje: više imena: authors list (link) doi:10.1016/S0169-4332(98)00251-7
  8. ^ a b N. N. Greenwood i A. Earnshaw: Chemie der Elemente, 1. izd., VCH, Weinheim 1988, ISBN 3-527-26169-9, str. 482.
  9. ^ Tabet, N; A.L Al-Oteibi; M.A Salim (1999). "XPS study of the growth kinetics of thin films obtained by thermal oxidation of germanium substrates". Journal of Electron Spectroscopy and Related Phenomena. 101–103: 233. Referenca sadrži prazan nepoznati parametar: |1= (pomoć)CS1 održavanje: više imena: authors list (link)
  10. ^ Xu, Li; Sevov Slavi C. (1999). "Oxidative Coupling of Deltahedral [Ge9]4− Zintl Ions". J. Am. Chem. Soc. 121 (39): 9245–9246. doi:10.1021/ja992269s

Greška kod citiranja: <ref> oznaka s imenom "binder" definirana u <references> nije korištena u ranijem tekstu.
Greška kod citiranja: <ref> oznaka s imenom "wieser" definirana u <references> nije korištena u ranijem tekstu.
Greška kod citiranja: <ref> oznaka s imenom "manjera" definirana u <references> nije korištena u ranijem tekstu.
Greška kod citiranja: <ref> oznaka s imenom "ludwig" definirana u <references> nije korištena u ranijem tekstu.
Greška kod citiranja: <ref> oznaka s imenom "lide" definirana u <references> nije korištena u ranijem tekstu.

Greška kod citiranja: <ref> oznaka s imenom "zhang" definirana u <references> nije korištena u ranijem tekstu.


Šablon:Link FA Šablon:Link FA