Razlika između verzija stranice "Iterbij"

S Wikipedije, slobodne enciklopedije
[pregledana izmjena][pregledana izmjena]
Uklonjeni sadržaj Dodani sadržaj
No edit summary
No edit summary
Red 138: Red 138:


Najvažniji izvori iterbija su ležišta monacita i ksenotima u [[Kina|Kini]] i Maleziji (tamo je u vidu pratećeg minerala kasiteritu). Zbog slabe potražnje na svjetskom tržištu za ovim metalom, situacija sa proizvodnjom i zalihama iterbija ne smatra se kritičnom.<ref name="Harald"/>
Najvažniji izvori iterbija su ležišta monacita i ksenotima u [[Kina|Kini]] i Maleziji (tamo je u vidu pratećeg minerala kasiteritu). Zbog slabe potražnje na svjetskom tržištu za ovim metalom, situacija sa proizvodnjom i zalihama iterbija ne smatra se kritičnom.<ref name="Harald"/>

== Proizvodnja ==
[[Datoteka:Ultrapure ytterbium, 2 grams. Original size in cm - 1 x 1.5.jpg|mini|100px|lijevo|Iterbij]]
Zbog teškog razdvajanja lantanoida, dobijanje iterbija je izuzetno komplicirano i dugotrajno. Polazni minerali poput monacita ili ksenotima se najprije rastapaju pomoću [[Kiseline|kiselina]] ili [[Baza (hemija)|baza]] u rastvor. Odvajanje iterbija od drugih lantanoida moguće je pomoću različitih metoda, pri čemu tehnički najvažniju predstavlja ionsko-izmjenjivačka metoda odvajanja, kao i za druge rijetke lantanoide. U tom procesu rastvor sa rijetkim ''zemljama'' se nanosi na pogodnu [[Smola|smolu]], na koju se pojedinačni ioni lantanoida različito jako mogu vezati. Zatim se rastvor odvajaju od smole [[Ionoizmjenjivačka hromatografija|ionskoizmjenjivačkom hromatografijom]] pomoću sredstava koji s ionima grade komplekse poput [[EDTA]], [[DTPA]] i [[HEDTA]], te se zbog različite jačine veza između smole i iona lantanoida mogu odvojiti željeni ioni određenog lantanoida.<ref name="Ullmann" /><ref name="Gelis"/><ref name="Hubicka"/>

Hemijsko odvajanje je moguće putem različitih reakcija iterbij-, lutecij- i [[Tulij-acetat|tulij-acetata]] sa amalgamom [[natrij]]a. Tako iterbij gradi amalgam, dok spojevi lutecija i tulija ne reagiraju.<ref name="Marsh"/>

Dobijanje metalnog iterbija može se izvoditi elektrolizom istopljenih spojeva iterbij(III)-fluorida i iterbij(III)-hlorida, sa alkalnim ili zemnoalkalnim halogenidima do redukcije pri tački topljenja, te tečnim [[kadmij]]em ili [[cink]]om kao katodom. Osim ove, iterbij se može dobiti i metalotermičkom redukcijom iterbij(III)-fluorida sa [[kalcij]]em ili [[Iterbij(III)-oksid|iterbij(III)-oksida]] sa lantanom ili [[cerij]]em. Ako se ova posljednja reakcija izvodi u [[vakuum]]u, iterbij se mora [[destilacija|destilirati]] te se tako može odvojiti od drugih lantanoida.<ref name="Ullmann" />


== Reference ==
== Reference ==
{{refspisak|2|refs=
{{refspisak|2|refs=
<ref name="Marsh">Joseph K. Marsh: ''4. Rare-earth metal amalgams. Part III. The separation of ytterbium from its neighbours.'' u: ''Journal of the Chemical Society (Resumed).'' 1943, str. 8, {{doi|10.1039/JR9430000008}}</ref>
<ref name="Hubicka">Halina Hubicka, Dorota Drobek: ''Anion-exchange method for separation of ytterbium from holmium and erbium.'' u: ''Hydrometallurgy.'' 47, 1997, str. 127–136, {{doi|10.1016/S0304-386X(97)00040-6}}</ref>
<ref name="Gelis">V. M. Gelis, E. A. Chuveleva, L. A. Firsova, E. A. Kozlitin, I. R. Barabanov: ''Optimization of Separation of Ytterbium and Lutetium by Displacement Complexing Chromatography.'' u: ''Russian Journal of Applied Chemistry.'' 78, 2005, str. 1420–1426, {{doi|10.1007/s11167-005-0530-6}}</ref>
<ref name="Harald">Harald Elsner: ''Kritische Versorgungslage mit schweren Seltenen Erden – Entwicklung „Grüner Technologien“ gefährdet?'' u: ''Commodity Top News.'' br. 36, 2011. [http://www.bgr.bund.de/DE/Gemeinsames/Produkte/Downloads/Commodity_Top_News/Rohstoffwirtschaft/36_kritische-versorgungslage.pdf?__blob=publicationFile&v=4 (pdf)]</ref>
<ref name="Harald">Harald Elsner: ''Kritische Versorgungslage mit schweren Seltenen Erden – Entwicklung „Grüner Technologien“ gefährdet?'' u: ''Commodity Top News.'' br. 36, 2011. [http://www.bgr.bund.de/DE/Gemeinsames/Produkte/Downloads/Commodity_Top_News/Rohstoffwirtschaft/36_kritische-versorgungslage.pdf?__blob=publicationFile&v=4 (pdf)]</ref>
<ref name="Voloshin">A. V. Voloshin, Ya. A. Pakhomovsky, F. N. Tyusheva: ''Keiviite Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, a new ytterbium silicate from amazonitic pegmatites of the Kola Peninsula.'' u: ''Mineralog. Zhurnal.'' 5-5, 1983, str. 94–99 ([http://www.minsocam.org/ammin/AM69/AM69_1190.pdf Abstract in American Mineralogist, str. 1191.]; PDF).</ref>
<ref name="Voloshin">A. V. Voloshin, Ya. A. Pakhomovsky, F. N. Tyusheva: ''Keiviite Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, a new ytterbium silicate from amazonitic pegmatites of the Kola Peninsula.'' u: ''Mineralog. Zhurnal.'' 5-5, 1983, str. 94–99 ([http://www.minsocam.org/ammin/AM69/AM69_1190.pdf Abstract in American Mineralogist, str. 1191.]; PDF).</ref>

Verzija na dan 8 juni 2017 u 13:25

Iterbij,  70Yb
Iterbij u periodnom sistemu
Hemijski element, Simbol, Atomski brojIterbij, Yb, 70
SerijaLantanoidi
Grupa, Perioda, BlokLa, 6, f
Izgledsrebrenobijeli metal
CAS registarski broj7440-64-4
Zastupljenost2,5 · 10-4[1] %
Atomske osobine
Atomska masa173,045(10)[2][3] u
Atomski radijus (izračunat)175 (222) pm
Kovalentni radijus187 pm
Van der Waalsov radijus- pm
Elektronska konfiguracija[Xe] 4f146s2
Broj elektrona u energetskom nivou2, 8, 18, 32, 8, 2
1. energija ionizacije603,4 kJ/mol
2. energija ionizacije1174,8 kJ/mol
3. energija ionizacije2417 kJ/mol
Fizikalne osobine
Agregatno stanječvrsto
Kristalna strukturakubična plošno centrirana
Gustoća6973 kg/m3 pri 298,15[4] K
Magnetizamparamagnetičan (Χm = 3,4 · 10−5)[5]
Tačka topljenja1097 K (824 °C)
Tačka ključanja1703[6] K (1430 °C)
Molarni volumen24,84 · 10-6 m3/mol
Toplota isparavanja159[6] kJ/mol
Toplota topljenja7,6 kJ/mol
Pritisak pare395 Pa pri 1097 K
Brzina zvuka1590 m/s pri 293,15 K
Specifična toplota150 J/(kg · K)
Specifična električna provodljivost4 · 106 S/m
Toplotna provodljivost39 W/(m · K)
Hemijske osobine
Oksidacioni broj2, 3
Elektrodni potencijal-2,22 V (Yb3+ + 3e- → Yb)
Elektronegativnost1,1 (Pauling-skala)
Izotopi
Izo RP t1/2 RA ER (MeV) PR
168Yb

0,13 %

Stabilan
169Yb

sin

32,026 d ε 0,909 169Tm
170Yb

3,05 %

Stabilan
171Yb

14,3 %

Stabilan
172Yb

21,9 %

Stabilan
173Yb

16,12 %

Stabilan
174Yb

31,8 %

Stabilan

Parts per million

175Yb

sin

4,185 d β- 0,470 175Lu
176Yb

12,7 %

Stabilan
Sigurnosno obavještenje
Oznake upozorenja
Šablon:Sigurnosni simboli
Obavještenja o riziku i sigurnostiR: 11-20/21/22
S: 16-33-36
Ako je moguće i u upotrebi, koriste se osnovne SI jedinice.
Ako nije drugačije označeno, svi podaci dobijeni su mjerenjima u normalnim uvjetima.

Iterbij je hemijski element sa simbolom Yb i rednim brojem 70. U periodnom sistemu nalazi se u grupi lantanoida te se stoga ubraja u metale rijetkih zemlji. Poput ostalih lantanoida, on je srebreno-sjajni teški metal. Osobine iterbija ne slijede kontrakciju lantanoida, a zbog svoje elektronske konfiguracije ovaj element ima značajno manju gustoću kao i niže temperature topljenja i ključanja od susjednih elemenata u periodnom sistemu.

Iterbij je otkrio Jean Charles Galissard de Marignac 1878. godine prilikom proučavanja minerala gadolinita. Kasnije, 1907. godine, Georges Urbain, Carl Auer von Welsbach i Charles James, nezavisno jedan od drugog, uspjeli su iz Marignacovog iterbija izdvojiti još jedan element, lutecij. Welbach je za ime novog elementa predlagao aldebaranij, međutim ipak je nakon dugih rasprava i protivno njegovoj volji, zadržano današnje ime iterbij.

U tehničkom pogledu element i njegovi spojevi koriste se u vrlo malehnim količinama, uglavnom zbog vrlo složenog načina njegovog odvajanja od drugih lantanoida, između ostalog koristi se kao dotirajuće sredstvo za lasere na bazi itrij-aluminij granata. Iterbij(III)-hlorid i iterbij(II)-jodid su reagensi koji se koriste u raznim organskim reakcijama sinteze.

Historija

Iterbij je 1878. otkrio švicarski hemičar Jean Charles Galissard de Marignac. On je detaljnije proučavao gadolinit, te je pokušao odvojiti erbij koji je nerastvorljiv u vreloj vodi od drugih mineralnih sastojaka putem razlaganja nitrata. Pri tome otkrio je da preostali kristali nisu u potpunosti izgrađeni od crvenkastog erbij-nitrata, već su bili vidljivi i neki bezbojni kristali. Izmjereni apsorpcijski spektar pokazao je da se u tom slučaju moralo raditi o kristalima nekog do tad nepoznatog elementa. Marignac je elementu dao ime iterbium, prema mjestu pronalaska gadolinita u švedskom Ytterbyju, kao i njegovoj sličnosti sa itrijem. Odvajanje oba elementa uslijedilo je nakon drugog eksperimenta dodavanjem hiposulfitne kiseline u rastvor hlorida.[7][8]

Francuz Georges Urbain, Austrijanac Carl Auer von Welsbach i Amerikanac Charles James su, nezavisno jedan od drugog, objavili 1907. godine da Marignacov iterbij nije čisti element, već predstavlja smjesu dva elementa. Tu smjesu su uspjeli razdvojiti na čiste hemijske elemente iterbij i lutecij. Tom prilikom Carl Auer von Welsbach je novim elementima dao naziv aldebaranij (prema zvijezdi Aldebaran) i kasiopeij, dok je Urbain predložio nazive neoiterbij i lutecij.[9][10] Godine 1909. međunarodna komisija za atomsku masu, u čijem sastavu su bili Frank Wigglesworth Clarke, Wilhelm Ostwald, Thomas Edward Thorpe i Georges Urbain, odlučila je da se Urbainu prizna otkriće lutecija, te u skladu s tim prihvati njegovo predloženo ime za element.[11] Također je i zadržano staro Marignacovo ime za iterbij.

Elementarni iterbij prvi su dobili 1936. hemičari Wilhelm Klemm i Heinrich Bommer. Oni su metalni iterbij dobili redukcijom iterbij(III)-hlorida pomoću kalija pri temperaturi od 250 °C. Osim toga, odredili su i kristalnu strukturu i magnetske osobine ovog metala.[12]

Rasprostranjenost

Na Zemlji, iterbij je vrlo rijedak element, njegov udio u kontinentalnoj Zemljinoj kori iznosi oko 3,2 ppm (0,00032%).[13] Ovaj metal javlja se kao sastavni dio rijetkih minerala, prije svega onih koji sadrže itrij i teže lantanoide poput ksenotima i gadolinita. Tako naprimjer ksenotim iz Malezije sadrži do 6,2% iterbija. Za razliku od njega, ceritne zemlje poput monacita i bastnesita sadrže dosta male količine iterbija. Monacit, u zavisnosti od nalazišta, sadrži od 0,12% do 0,5% iterbija.[14]

Poznato je više vrlo rijetkih minerala u kojim se iterbij nalazi kao najčešći rijetki zemni metal. U takve spadaju ksenotim-(Yb), gdje iterbija ima 32% mjereno po masi, a empirijska formula mu glasi (Yb0,40Y0,27Lu0,12Er0,12Dy0,05Tm0,04Ho0,01)PO4.[15] Osim njega, iterbij je sadržan u keiviitu-(Yb) sa empirijskom formulom (Yb1,43Lu0,23Er0,17Tm0,08Y0,05Dy0,03Ho0,02)2Si2O7.[16] Međutim, ovi minerali su dijelovi jednog niza miješanih kristala, koji su također i drugačijeg prirodnog sastava, gdje je itrij glavni "sastojak".

Najvažniji izvori iterbija su ležišta monacita i ksenotima u Kini i Maleziji (tamo je u vidu pratećeg minerala kasiteritu). Zbog slabe potražnje na svjetskom tržištu za ovim metalom, situacija sa proizvodnjom i zalihama iterbija ne smatra se kritičnom.[17]

Proizvodnja

Iterbij

Zbog teškog razdvajanja lantanoida, dobijanje iterbija je izuzetno komplicirano i dugotrajno. Polazni minerali poput monacita ili ksenotima se najprije rastapaju pomoću kiselina ili baza u rastvor. Odvajanje iterbija od drugih lantanoida moguće je pomoću različitih metoda, pri čemu tehnički najvažniju predstavlja ionsko-izmjenjivačka metoda odvajanja, kao i za druge rijetke lantanoide. U tom procesu rastvor sa rijetkim zemljama se nanosi na pogodnu smolu, na koju se pojedinačni ioni lantanoida različito jako mogu vezati. Zatim se rastvor odvajaju od smole ionskoizmjenjivačkom hromatografijom pomoću sredstava koji s ionima grade komplekse poput EDTA, DTPA i HEDTA, te se zbog različite jačine veza između smole i iona lantanoida mogu odvojiti željeni ioni određenog lantanoida.[14][18][19]

Hemijsko odvajanje je moguće putem različitih reakcija iterbij-, lutecij- i tulij-acetata sa amalgamom natrija. Tako iterbij gradi amalgam, dok spojevi lutecija i tulija ne reagiraju.[20]

Dobijanje metalnog iterbija može se izvoditi elektrolizom istopljenih spojeva iterbij(III)-fluorida i iterbij(III)-hlorida, sa alkalnim ili zemnoalkalnim halogenidima do redukcije pri tački topljenja, te tečnim kadmijem ili cinkom kao katodom. Osim ove, iterbij se može dobiti i metalotermičkom redukcijom iterbij(III)-fluorida sa kalcijem ili iterbij(III)-oksida sa lantanom ili cerijem. Ako se ova posljednja reakcija izvodi u vakuumu, iterbij se mora destilirati te se tako može odvojiti od drugih lantanoida.[14]

Reference

  1. ^ Harry H. Binder: Lexikon der chemischen Elemente. S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3.
  2. ^ Standardna atomska težina iterbija na ciaaw.org
  3. ^ Revdirana standardna atomska težina, na iupac.org
  4. ^ N. N. Greenwood, A. Earnshaw: Chemie der Elemente. 1. izd. VCH, Weinheim 1988, ISBN 3-527-26169-9, str. 1579.
  5. ^ Robert C. Weast (izd.): CRC Handbook of Chemistry and Physics. CRC (Chemical Rubber Publishing Company), Boca Raton 1990, ISBN 0-8493-0470-9, str. E-129 do E-145. Vrijednosti u navedenoj knjizi su navedene u g/mol i naznačene u cgs jedinicama. Ovdje navedena vrijednost je preračunata po SI sistemu i bez mjerne jedinice.
  6. ^ a b Yiming Zhang, Julian R. G. Evans, Shoufeng Yang: Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. u: Journal of Chemical & Engineering Data. 56, 2011, str. 328–337, doi:10.1021/je1011086
  7. ^ Jean Charles Galissard de Marignac: Sur l’ytterbine, terre nouvelle, contenu dans la gadolinite. u: Comptes Rendus. 87, 1878, str. 578–581.
  8. ^ Per Enghag: Encyclopedia of the elements: technical data, history, processing, applications. John Wiley & Sons, 2004, ISBN 3-527-30666-8, str. 448.
  9. ^ C. Auer v. Welsbach: Die Zerlegung des Ytterbiums in seine Elemente. u: Monatshefte für Chemie. 29, 1908, str. 181–225, doi:10.1007/BF01558944
  10. ^ M. G. Urbain: Un nouvel élément, le lutécium, résultant du dédoublement de l'ytterbium de Marignac. u: Comptes rendus. 145, 1908, str. 759–762
  11. ^ F. W. Clarke, W. Ostwald, T. E. Thorpe, G. Urbain: Bericht des Internationalen Atomgewichts-Ausschusses fuer 1909. u: Berichte der deutschen chemischen Gesellschaft. 42, 1909, str. 11–17, doi:10.1002/cber.19090420104
  12. ^ W. Klemm, H. Bommer: Zur Kenntnis der Metalle der seltenen Erden. u: Zeitschrift für anorganische und allgemeine Chemie. 231, 1937, str. 138–171, doi:10.1002/zaac.19372310115
  13. ^ David R. Lide (izd.): CRC Handbook of Chemistry and Physics. 90. izd, CRC Press/Taylor and Francis, Boca Raton, FL, pogl. Geophysics, Astronomy, and Acoustics; Abundance of Elements in the Earth's Crust and in the Sea, str. 14-18.
  14. ^ a b c Ian McGill: Rear Earth Elements. u: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim 2005, doi:10.1002/14356007.a22_607
  15. ^ Harvey M. Buck, Mark A. Cooper, Petr Cerny, Joel D. Grice, Frank C. Hawthorne: Xenotime-(Yb), YbPO4, a new mineral species from the Shatford Lake pegmatite group, southeastern Manitoba, Canada. u: Canadian Mineralogist. 37, 1999, str. 1303–1306 (Sažetak u časopisu "American Mineralogist", str. 1324.; PDF).
  16. ^ A. V. Voloshin, Ya. A. Pakhomovsky, F. N. Tyusheva: Keiviite Yb2Si2O7, a new ytterbium silicate from amazonitic pegmatites of the Kola Peninsula. u: Mineralog. Zhurnal. 5-5, 1983, str. 94–99 (Abstract in American Mineralogist, str. 1191.; PDF).
  17. ^ Harald Elsner: Kritische Versorgungslage mit schweren Seltenen Erden – Entwicklung „Grüner Technologien“ gefährdet? u: Commodity Top News. br. 36, 2011. (pdf)
  18. ^ V. M. Gelis, E. A. Chuveleva, L. A. Firsova, E. A. Kozlitin, I. R. Barabanov: Optimization of Separation of Ytterbium and Lutetium by Displacement Complexing Chromatography. u: Russian Journal of Applied Chemistry. 78, 2005, str. 1420–1426, doi:10.1007/s11167-005-0530-6
  19. ^ Halina Hubicka, Dorota Drobek: Anion-exchange method for separation of ytterbium from holmium and erbium. u: Hydrometallurgy. 47, 1997, str. 127–136, doi:10.1016/S0304-386X(97)00040-6
  20. ^ Joseph K. Marsh: 4. Rare-earth metal amalgams. Part III. The separation of ytterbium from its neighbours. u: Journal of the Chemical Society (Resumed). 1943, str. 8, doi:10.1039/JR9430000008