Svemirski teleskop "James Webb"

S Wikipedije, slobodne enciklopedije
Idi na navigaciju Idi na pretragu
James Webb svemirski teleskop

Svemirski teleskop James Webb (JWST) nasljednik je Svemirskog teleskopa Hubble, dizajniran prvenstveno za provođenje infracrvene astronomije. Kao najveći optički teleskop u svemiru, njegova značajno poboljšana infracrvena rezolucija i osjetljivost mu omogućavaju da vidi objekte koji su previše stari, udaljeni ili blijedi za teleskop Hubble ili zemaljske teleskope. Očekuje se da će ovo omogućiti širok spektar istraživanja u oblastima astronomije i kosmologije, kao što su posmatranje prvih zvijezda i formiranje prvih galaksija, te detaljna atmosferska karakterizacija potencijalno nastanjivih egzoplaneta.

Američka Nacionalna uprava za aeronautiku i svemir (NASA) vodila je razvoj JWST-a u saradnji sa Evropskom svemirskom agencijom (ESA) i Kanadskom svemirskom agencijom (CSA). NASA Goddard Space Flight Center (GSFC) u Marylandu upravljao je razvojem teleskopa, Institut Space Telescope Science Institute u Baltimoru u Homewood kampusu Univerziteta Johns Hopkins upravlja JWST, a glavni izvođač je bio Northrop Grumman. Teleskop je nazvan po Jamesu E. Webbu, koji je bio administrator NASA-e od 1961. do 1968. tokom programa Mercury, Gemini i Apolo.

U novembru 2011, Kongres SAD je promijenio svoj plan obustave JWST-a, i umjesto toga dodao sredstva za kompletiranje projekta, u ukupnom iznosu od 8 milijardi američkih dolara.[1]

U planu je bilo da teleskop bude lansiran u orbitu 30. marta 2021. godine,[2][3] međutim, tada je postojalo samo dvanaest procenata šansi da će se to desiti u predviđenom roku zbog situacije sa koronavirusom.[4]. Lansiran je u decembru 2021. godine na raketi Ariane 5 iz Kouroua, Francuska Gvajana, i stigao je na tačku Sunce-Zemlja L2 Lagrange u januaru 2022. Od jula 2022., JWST treba naslijediti Hubble kao NASA-inu vodeću misiju u astrofizici. Prva slika sa JWST-a objavljena je javnosti putem konferencije za novinare 11. jula 2022. godine [5].

Primarno ogledalo JWST-a sastoji se od 18 heksagonalnih segmenata ogledala napravljenih od pozlaćenog berilijuma koji zajedno stvaraju ogledalo prečnika 6,5 metara (21 stopu), u poređenju sa Hubbleovim 2,4 m (7,9 stopa). Ovo daje JWST-u površinu za prikupljanje svjetlosti od oko 25 m2, oko šest puta više od Hubblea.

Za razliku od Hubblea, koji posmatra u bliskom ultraljubičastom, vidljivom i bliskom infracrvenom (0,1–1,7 μm) spektru, JWST će promatrati u nižem frekvencijskom rasponu, od dugovalne vidljive svjetlosti (crvene) do srednje infracrvene (0,6–28,3 μm) ).

Teleskop mora biti izuzetno hladan, ispod 50 K (−223 °C; −370 °F), tako da infracrvena svjetlost koju emituje sam teleskop ne ometa prikupljenu svjetlost. Raspoređen je u solarnoj orbiti u blizini Lagrange tačke Sunce–Zemlja L2, oko 1,5 miliona kilometara od Zemlje, gde ga njegov petoslojni zaštitni štit štiti od zagrijavanja Sunca, Zemlje i Mjeseca.

Prvobitni dizajni za teleskop, tada nazvan Svemirski teleskop nove generacije, kreiran je1996. godine. Dvije konceptualne studije su naručene 1999. godine, za potencijalno lansiranje 2007. i budžet od milijardu američkih dolara. Program je bio opterećen ogromnim prekoračenjem troškova i kašnjenjima; veliki redizajn 2005. godine doveo je do sadašnjeg pristupa, sa izgradnjom završenom 2016. godine uz ukupnu cijenu od 10 milijardi američkih dolara.

Karakteristike[uredi | uredi izvor]

Webbova prva slika galaktičkog jata SMACS 0723 dubokog polja (objavljena 11. jula 2022.)

Svemirski teleskop James Webb ima masu koja je otprilike polovina mase svemirskog teleskopa Hubble. JWST ima primarno ogledalo od berilijuma obloženo zlatom prečnika 6,5 metara (21 stopu) koje se sastoji od 18 zasebnih šestougaonih ogledala. Ogledalo ima uglačanu površinu od 26,3 m2, od čega je 0,9 m2 zaklonjeno sekundarnim potpornim podupiračima [6], što daje ukupnu sabirnu površinu od 25,4 m2. Ovo je preko šest puta veće od površine sakupljanja Hubbleovog ogledala prečnika 2,4 metra (7,9 stopa), koje ima sabirnu površinu od 4,0 m2. Ogledalo ima zlatni premaz koji pruža infracrvenu refleksiju i koji je prekriven tankim slojem stakla radi izdržljivosti.

JWST je prvenstveno dizajniran za blisku infracrvenu astronomiju, ali može vidjeti i narandžastu i crvenu vidljivu svjetlost, kao i srednje infracrveno područje, ovisno o instrumentu. Može detektovati objekte do 100 puta slabije od Hubblea, i objekte mnogo ranije u istoriji svemira, nazad do crvenog pomaka z≈20 (oko 180 miliona godina kosmičkog vremena nakon Velikog praska) [7]. Za poređenje, smatra se da su najranije zvijezde nastale između z≈30 i z≈20 (100-180 miliona godina kosmičkog vremena), a prve galaksije su se mogle formirati oko crvenog pomaka z≈15 (oko 270 miliona godina kosmičkog vremena). Habl ne može da vidi dalje od veoma rane rejonizacije [8] na oko z≈11,1 (galaksija GN-z11, 400 miliona godina kosmičko vreijme) [9].

Dizajn naglašava veće mogućnosti u oblasti osmatranja blisko do srednje infracrvenog spektra iz nekoliko razloga:

  • Objekti s visokim crvenim pomakom (vrlo rani i udaljeni) imaju vidljive emisije pomjerene u infracrvenu, te se stoga njihova svjetlost danas može promatrati samo putem infracrvene astronomije;
  • infracrvena svjetlost lakše prolazi kroz oblake prašine nego vidljiva svjetlost [10]
  • hladniji objekti kao što su diskovi čestica i planete najjače emituju u infracrvenom zračenju;
  • ove infracrvene raspone je teško proučavati sa zemlje ili pomoću postojećih svemirskih teleskopa kao što je Hubble.

Zemaljski teleskopi moraju gledati kroz Zemljinu atmosferu, koja je neprozirna u mnogim infracrvenim rasponima (vidi sliku atmosferske apsorpcije). Čak i tamo gdje je atmosfera prozirna, mnoga ciljana hemijska jedinjenja, kao što su voda, ugljični dioksid i metan, također postoje u Zemljinoj atmosferi, što uvelike otežava analizu. Postojeći svemirski teleskopi kao što je Hubble ne mogu proučavati ove pojaseve jer njihova ogledala nisu dovoljno hladna (Hubble ogledalo se održava na oko 15 °C [288 K; 59 °F]), tako da sam teleskop jako zrači u infracrvenim opsezima [11].

JWST također može promatrati obližnje objekte, uključujući objekte u Sunčevom sistemu, koji imaju prividnu ugaonu brzinu kretanja od 0,030 lučnih sekundi u sekundi ili manje. Ovo uključuje sve planete i satelite, komete i asteroide izvan Zemljine orbite, i "praktično sve" poznate objekte Kuiperovog pojasa. Osim toga, može uočiti oportunističke i neplanirane ciljeve u roku od 48 sati od odluke da to učini, kao što su supernove i eksplozije gama zraka.

Lokacija i orbita[uredi | uredi izvor]

Grubi prikaz Zemljine atmosferske propustljivosti (ili neprozirnosti) za različite talasne dužine elektromagnetnog zračenja, uključujući vidljivu svjetlost

JWST radi u orbiti, kruži oko tačke u svemiru poznate kao Lagrangeova tačka Sunce-Zemlja L2, otprilike 1.500.000 km izvan Zemljine orbite oko Sunca. Njegov stvarni položaj varira između oko 250.000 i 832.000 km oko tačke L2 dok orbitira, držeći ga podalje od Zemljine i Mjesečeve sjene. Poređenja radi, Hubble kruži 550 km iznad Zemljine površine, a Mjesec je otprilike 400.000 km od Zemlje. Objekti u blizini ove L2 tačke Sunce-Zemlja mogu kružiti oko Sunca u sinhronoj liniji sa Zemljom, omogućavajući teleskopu da ostane na otprilike konstantnoj udaljenosti sa kontinuiranom orijentacijom svog jedinstvenog sunčevog štitnika opreme prema Suncu, Zemlji i Mjesecu. U kombinaciji sa svojom širokom orbitom koja izbjegava sjenke, teleskop može istovremeno blokirati dolaznu toplinu i svjetlost iz sva tri ova tijela i izbjeći čak i najmanje promjene temperature od Zemljinih i Mjesečevih sjenki koje bi uticale na strukturu, ali i dalje održava neprekidnu sunčevu energiju i Zemaljske komunikacije na njegovoj strani okrenutoj prema suncu. Ovaj raspored održava temperaturu svemirskog broda konstantnom i ispod 50 K (-223 °C; -370 °F) neophodnih za slaba infracrvena posmatranja [12].

Zaštita od sunca[uredi | uredi izvor]

Testna jedinica suncobrana složena i proširena u postrojenju Northrop Grumman u Kaliforniji, 2014.

Da bi se vršila osmatranja u infracrvenom spektru, JWST se mora održavati na temperaturama ispod 50 K (−223,2 °C; −369,7 °F); inače bi infracrveno zračenje iz samog teleskopa preplavilo njegove instrumente. Stoga koristi veliki štitnik od sunca da blokira svjetlost i toplinu od Sunca, Zemlje i Mjeseca, a kako je već navedeno, njegov položaj blizu Sunca-Zemlje L2 drži sva tri tijela na istoj strani svemirske letjelice u svakom trenutku. Njegova orbita oko L2 tačke izbjegava sjenku Zemlje i Meseca, održavajući konstantno okruženje za zaštitu od sunca i sunčevih zračenja. Zaštita održava stabilnu temperaturu za dijelove na tamnoj strani, što je ključno za održavanje preciznog poravnanja primarnih segmenata ogledala u prostoru.

Petoslojni štitnik od sunca, svaki sloj tanak kao dlakljudske kose [13], je napravljen od Kapton E, komercijalno dostupnog poliimidnog filma iz DuPont-a, s membranama posebno obloženim aluminijem s obje strane i slojem poluprovodnog silicijuma prema Suncu okrenutoj strana; dva najtoplija sloja predviđena su da reflektuje sunčevu toplotu nazad u svemir.[20] Slučajno kidanje delikatne strukture filma tokom testiranja postavljanja 2018. dovele su do daljnjih kašnjenja lansiranja teleskopa.

Štitnik za sunce je dizajniran da se preklopi dvanaest puta tako da stane u nosivi dio rakete Ariane 5, koji ima 4,57 m u prečniku i 16,19 m dužine. Dimenzije potpuno postavljenog štita bile su planirane u mjeri 14,162 m × 21,197 m. Štitnik za sunce je ručno sastavljen u ManTech (NeXolve) u Huntsvilleu, Alabama, prije nego što je isporučen Northrop Grumman u Redondo Beach, Kalifornija, na testiranje.

Zbog zaštite od sunca, JWST nema neograničeno polje osmatranja u bilo kom trenutku. Teleskop može vidjeti 40 posto neba iz jedne pozicije i može vidjeti cijelo nebo u periodu od šest mjeseci.

Optika[uredi | uredi izvor]

Inženjeri čiste probno ogledalo snijegom od ugljičnog dioksida, 2015

Primarno ogledalo JWST-a je berilijumski reflektor prečnika 6,5 m pozlaćeni i sa sabirnom površinom od 25,4 m2 . Da je napravljen kao jedno veliko ogledalo, ovo bi bilo preveliko za postojeće lansirne rakete. Ogledalo je stoga sastavljeno od 18 heksagonalnih segmenata (tehnika koju je prvi predložio Guido Horn d'Arturo), koji su se otvorili nakon što je teleskop lansiran. Senziranje talasnog fronta u ravni slike kroz pronalaženje faze koristi se za pozicioniranje segmenata ogledala na ispravnu lokaciju pomoću vrlo preciznih mikro-motora. Nakon ove početne konfiguracije, potrebna su im samo povremena ažuriranja svakih nekoliko dana kako bi zadržali optimalan fokus [14]. Ovo je razlčito od zemaljskih teleskopa, na primjer teleskopa Keck, koji kontinuirano prilagođavaju svoje segmente ogledala koristeći aktivnu optiku kako bi prevladali efekte gravitacije i vjetra.

Sklop glavnog ogledala s prednje strane sa pričvršćenim primarnim retrovizorima, novembar 2016.

Webb teleskop će koristiti 132 mala motora (zvana aktuatori) za pozicioniranje i povremeno podešavanje optike jer su poremećaji teleskopa izazvani vanjskim uticajima zanemarivi u svemiru. Svakim od 18 primarnih segmenata ogledala upravlja 6 pozicionih aktuatora sa dodatnim ROC (radijus zakrivljenosti) aktuatorom u centru za podešavanje zakrivljenosti (7 aktuatora po segmentu), za ukupno 126 primarnih aktuatora ogledala i još 6 aktuatora za sekundarno ogledalo, dajući ukupno 132 [15]. Aktuatori mogu pozicionirati ogledalo sa tačnošću od 10 nanometara (10 milionitih dijelova milimetra).

Aktuatori su ključni u održavanju poravnanja ogledala teleskopa i dizajnirani su i proizvedeni od strane Ball Aerospace & Technologies. Svaki od 132 aktuatora pokreće jedan koračni (stepper) motor, omogućavajući fina i gruba podešavanja. Aktuatori pružaju grubu veličinu pomaka od 58 nanometara za veća podešavanja i finu veličinu pomaka za podešavanja od 7 nanometara [16].

JWST-ov optički dizajn je anastigmat sa tri ogledala, koji koristi zakrivljena sekundarna i tercijarna ogledala za isporuku slika bez optičkih aberacija u širokom polju. Sekundarno ogledalo je prečnika 0,74 m. Osim toga, tu je i fino ogledalo za upravljanje koje može podesiti svoju poziciju mnogo puta u sekundi kako bi osiguralo stabilizaciju slike.

Ball Aerospace & Technologies je glavni optički podizvođač za JWST projekat, predvođen glavnim izvođačem Northrop Grumman Aerospace Systems, prema ugovoru sa NASA Goddard Space Flight Center, u Greenbeltu, Maryland [17]. Retrovizori, plus rezervni dijelovi za letenje, proizvedeni su i polirani od strane Ball Aerospace & Technologies na bazi berilijumskih segmenta koje proizvodi nekoliko kompanija uključujući Axsys, Brush Wellman i Tinsley Laboratories.

Naučni instrumenti[uredi | uredi izvor]

NIRCam je završen 2013.

Integrirani naučni instrumentni modul (ISIM) je okvir koji Webb teleskopu obezbjeđuje električnu energiju, računarske resurse, sposobnost hlađenja kao i strukturnu stabilnost. Napravljen je od spojenog grafitno-epoksidnog kompozita pričvršćenog na donju stranu Webbove strukture teleskopa. ISIM sadrži četiri naučna instrumenta i kameru vodiča [18].

  • NIRCam (Near InfraRed Camera) je infracrveni snimač koji će imati spektralnu pokrivenost u rasponu od ivice vidljivog (0,6 μm) do bliskog infracrvenog (5 μm). Postoji 10 senzora svaki od 4 megapiksela. NIRCam će takođe služiti kao senzor talasnog fronta opservatorije, koji je neophodan za detekciju talasnog fronta i aktivnosti kontrole, koji se koristi za poravnavanje i fokusiranje glavnih segmenata ogledala. NIRCam je napravio tim koji je predvodio Univerzitet Arizona, sa glavnim istraživačem Marsijom J. Rieke. Industrijski partner je Lockheed-Martinov centar za naprednu tehnologiju u Palo Altu, Kalifornija.
  • NIRSpec (Near InfraRed Spectrograph) će također izvoditi spektroskopiju na istom opsegu talasnih dužina. Izgradila ga je Evropska svemirska agencija u ESTEC-u u Noordwijku u Holandiji. Vodeći razvojni tim uključuje članove Airbus Defence and Space, Ottobrunn i Friedrichshafen, Njemačka, i Goddard Space Flight Center; sa Pierreom Ferruitom (École normale supérieure de Lyon) kao naučnim projektom NIRSpec. NIRSpec dizajn pruža tri režima posmatranja: režim niske rezolucije koji koristi prizme, režim više objekata R~1000 i R~2700 integralnu jedinicu polja ili režim spektroskopije sa dugim prorezom. Prebacivanje režima se vrši korištenjem mehanizma za predizbor talasne dužine koji se zove sklop filterskog kotača i odabirom odgovarajućeg disperzivnog elementa (prizma ili rešetka) pomoću mehanizma sklopa kotača rešetke. Oba mehanizma su zasnovana na uspješnim ISOPHOT mehanizmima kotača Infracrvene svemirske opservatorije. Režim sa više objekata oslanja se na složeni mehanizam mikro-zatvarača koji omogućava istovremeno posmatranje stotina pojedinačnih objekata bilo gde u vidnom polju NIRSpec-a. Postoje dva senzora svaki od 4 megapiksela. Mehanizmi i njihovi optički elementi su dizajnirani, integrisani i testirani od strane Carl Zeiss Optronics GmbH (danas Hensoldt) iz Oberkochena, Njemačka, prema ugovoru sa Astriumom.
Kalibracioni sklop, jedna komponenta NIRSpec instrumenta
MIRI

MIRI (srednji infracrveni instrument) će mjeriti srednje do duge infracrvene talasne dužine od 5 do 27 μm. Sadrži i srednju infracrvenu kameru i spektrometar za snimanje. MIRI je razvijen u saradnji između NASA-e i konzorcijuma evropskih zemalja, a predvode ga George Rieke (Univerzitet u Arizoni) i Gillian Wright (UK Astronomy Technology Centre, Edinburgh, Škotska, dio Vijeća za nauku i tehnologiju). MIRI ima slične mehanizme kotača kao i NIRSpec koje je također razvio i napravio Carl Zeiss Optronics GmbH prema ugovoru sa Max Planck institutom za astronomiju, Heidelberg, Njemačka. Završena montaža optičke klupe MIRI-ja isporučena je u Goddard centar za svemirske letove sredinom 2012. godine radi eventualne integracije u ISIM. Temperatura MIRI-ja ne smije da pređe 6° K (−267° C): mehanički hladnjak na gas helijum smješten na toploj strani štita okoline obezbjeđuje ovo hlađenje [19].

  • FGS/NIRISS (Senzor za fino navođenje i bliski infracrveni snimač i spektrograf bez proreza), koji vodi Kanadska svemirska agencija pod rukovodiocem projekta, naučnikom Johnom Hutchingsom (Herzbergov istraživački centar za astronomiju i astrofiziku, Nacionalni istraživački savjet). Uređaj se koristi za stabilizaciju linije vida opservatorije tokom naučnih posmatranja. Mjerenja FGS-a koriste se i za kontrolu cjelokupne orijentacije svemirske letjelice i za pokretanje finog upravljačkog ogledala za stabilizaciju slike. Kanadska svemirska agencija također obezbjeđuje modul bliskog infracrvenog snimanja i spektrografa bez proreza (NIRISS) za astronomsko snimanje i spektroskopiju u opsegu talasnih dužina od 0,8 do 5 μm, koji vodi glavni istraživač René Doyon na Univerzitetu u Montrealu. Iako se često zajedno pominju kao jedinica, NIRISS i FGS služe potpuno različitim svrhama, pri čemu je jedan naučni instrument, a drugi dio infrastrukture za podršku opservatorije [20].

NIRCam i MIRI imaju koronagrafe koji blokiraju zvjezdano svjetlo za posmatranje slabih ciljeva kao što su planete van sunčevog sistema i cirkumzvjezdani diskovi vrlo blizu sjajnih zvijezda.

Infracrvene detektore za NIRCam, NIRSpec, FGS i NIRISS module obezbjeđuje Teledyne Imaging Sensors (ranije Rockwell Scientific Company). Inženjerski tim James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) i Command and Data Handling (ICDH) koriste SpaceWire za slanje podataka između naučnih instrumenata i opreme za obradu podataka.

Historija[uredi | uredi izvor]

Razvoj do 2003.[uredi | uredi izvor]

Diskusije o nasljedniku teleskopa Hubble vođene su 1980-ih, ali se s ozbiljnim planiranjem počelo početkom 1990-ih. Koncept Hi-Z teleskopa razvijen je između 1989. i 1994. godine: infracrveni teleskop sa otvorom od 4 m koji bi se postavio u orbitu na 3 astronomske jedinice (AJ). Ova udaljena orbita bi bila korisna zbog smanjenja svjetlosne buke koja nastaje od interplanetarne prašine. Drugi rani planovi su zahtijevali misiju NEXUS prekursorskog teleskopa [21].

Ispravljanje optike Hubble svemirskog teleskopa u njegovim prvim godinama odigralo je značajnu ulogu u nastanku JWST-a. Godine 1993. NASA je pripremila STS-61, misiju Space Shuttlea koja će nositi zamjenu za HST-ovu kameru i rekonstrukciju njegovog spektrografa za snimanje kako bi se kompenzirala sferna aberacija u primarnom ogledalu. Dok je astronomska zajednica željno iščekivala ovu misiju, NASA je upozorila da ovaj izuzetan napredak u radu u svemiru nosi značajan rizik i da njegov uspješan završetak ni na koji način nije zagarantovan.

Shodno tome, HST & Beyond komitet je formiran 1995. godine kako bi procijenio učinkovitost misije popravke HST-a i istražio ideje za buduće svemirske teleskope koji bi bili potrebni ako misija popravke ne uspije [22]. Srećna okolnost je bila uspjeh servisiranja od strane svemirskih šatlova tokom decembra 1993. i neviđeni javni odziv na zapanjujuće slike koje je HST isporučio.

Ohrabren uspjehom HST-a, i prepoznajući inovativni rad u Evropi za buduće misije [23] [24], izvještaj Komiteta iz 1996. istražuje koncept većeg i mnogo hladnijeg, infracrvenog osjetljivog teleskopa koji bi mogao doseći u kosmičko vrijeme do rođenja prvih galaksija. Ovaj naučni cilj visokog prioriteta bio je izvan mogućnosti HST-a jer je, kao topli teleskop, bio zaslijepljen infracrvenom emisijom iz vlastitog optičkog sistema. Pored preporuka da se misija HST produži do 2005. i da se razvije tehnologija za pronalaženje planeta oko drugih zvijezda, NASA je prihvatila glavnu preporuku HST & Beyond za veliki, hladni svemirski teleskop (radijativno hlađen daleko ispod 0 °C) , i započeo je proces planiranja za budući JWST [25].

Počevši od 1960-ih i početkom svake decenije nakon toga, Nacionalne akademije su organizovale zajednicu američkih astronoma da kreativno razmišljaju o astronomskim instrumentima i istraživanjima za narednu deceniju, i da postignu konsenzus o ciljevima i prioritetima. Kao pobornik ovih Dekadnih istraživanja astronomije i astrofizike, NASA je također bila izuzetno uspješna u razvoju programa i alata za postizanje preporuka istraživanja. Dakle, čak i uz značajnu podršku i interesovanje javnosti sredinom 1990-ih za nasljednika HST-a, astronomska zajednica je smatrala da je određivanje visokog prioriteta za novi teleskop u Dekadnom istraživanju iz 2000. godine suštinsko.

Priprema za istraživanje uključivala je dalji razvoj naučnog programa za ono što je postalo poznato kao svemirski teleskop sljedeće generacije [26], i napredak u relevantnim tehnologijama od strane NASA-e. Kako su napredovala istraživanja u proučavanju rađanja galaksija u mladom univerzumu i traženju planeta oko drugih zvijezda – ovi glavni ciljevi su spojeni i nazvani "Origins".

Krajem 1990-ih NASA je osnovala podkomitete za određene oblasti, poput misija u kojima je svemir predstavljao laboratoriju za fundamentalnu astrofiziku, na primjer proučavanje crnih jama i supernovih. NGST je dobio najviši rang u Dekadnom istraživanju astronomije i astrofizike iz 2000. godine [27], što je omogućilo da se projekat nastavi uz potpunu podršku i konsenzus zajednice.

Administrator NASA-e, Dan Goldin, skovao je frazu "brže, bolje, jeftinije" i odlučio se za sljedeću veliku promjenu paradigme za astronomiju, naime, razbijanje barijere jednog ogledala. To je značilo prelazak sa "eliminacije pokretnih dijelova" na "naučiti živjeti s pokretnim dijelovima" (tj. segmentirana optika). Sa ciljem da se gustina mase desetostruko smanji, prvo je isproban silicijum karbid sa vrlo tankim slojem stakla na vrhu, ali je na kraju odabran berilij.

Sredinom 1990-ih era "brže, bolje, jeftinije" proizvela je NGST koncept, sa otvorom od 8 m koji je trebao biti prebačen na L2, za koji se grubo procijenilo da košta 500 miliona US$. Godine 1997. NASA je radila sa Goddard Space Flight Center, Ball Aerospace & Technologies, i TRW kako bi sprovela studije tehničkih zahtjeva i troškova tri različita koncepta, a 1999. odabrala je Lockheed Martin. i TRW za preliminarne konceptualne studije. Lansiranje je u to vrijeme bilo planirano za 2007. godinu, ali je datum lansiranja pomican mnogo puta.

2002. godine projekat je preimenovan po NASA-inom drugom administratoru (1961–1968), Jamesu E. Webbu (1906–1992). Webb je vodio agenciju tokom programa Apollo i ustanovio je naučno istraživanje kao osnovnu aktivnost NASA-e.

Godine 2003. NASA je TRW-u dodijelila glavni ugovor od 824,8 miliona dolara za JWST. Dizajn je zahtevao primarno ogledalo od 6,1 m i datum lansiranja 2010. Kasnije te godine, TRW je kupio Northrop Grumman u neprijateljskim preuzimanjem i postao je Northrop Grumman Space Technology.

JWST je projekat NASA-e, uz međunarodnu saradnju Evropske svemirske agencije (ESA) i Kanadske svemirske agencije (CSA) koje su se formalno pridružile 2004. i 2007. godine.

Razvoj – (re)planiranje – 2005[uredi | uredi izvor]

Razvojem je upravljao NASA-in centar za svemirske letove Goddard u Greenbeltu, Maryland, a John C. Mather je bio voditelj projekta. Primarni izvođač radova bio je Northrop Grumman Aerospace Systems, odgovoran za razvoj i izgradnju elementa svemirske letjelice, koji je uključivao satelitsku platformu, štitnik od sunca, sklop tornja koji se može postaviti (DTA) koji povezuje element optičkog teleskopa sa sabirnicom letjelice, i sklop srednjeg nosača (MBA). ) koji pomaže u postavljanju velikih štitnika za sunce na orbiti, dok je Ball Aerospace & Technologies ugovoren podizvođačem za razvoj i izgradnju samog OTE-a i modula integrisanog naučnog instrumenta (ISIM).

Objava rasta troškova u proljeće 2005. dovela je do ponovnog planiranja u augustu 2005. godine. Primarni tehnički rezultati ponovnog planiranja bili su značajne promjene u planovima integracije i testiranja, 22-mjesečno odlaganje lansiranja (od 2011. do 2013.) i eliminacija testiranja na nivou sistema za modove opservatorije na talasnoj dužini kraćoj od 1,7 μm. Ostale glavne karakteristike opservatorije ostale su nepromijenjene. Nakon ponovnog planiranja, projekat je revidiran u aprilu 2006. godine.

Kontroverze oko imena[uredi | uredi izvor]

Godine 2002, NASA-in administrator (2001–2004) Sean O'Keefe je donio odluku da nazove teleskop po Jamesu E. Webbu, administratoru NASA-e od 1961. do 1968. tokom programa Mercury, Gemini i velikog dijela programa Apollo.

Godine 2015. pojavile su se optužbe oko Webbove uloge tokom "lavanda progona" (lavanda scare), aktivnosti poduzetih od strane američke vlade sredinom XX vijeka protiv homoseksualaca na radnom mjestu u državnoj službi [28]. Zastrašivanje je dovelo do otpuštanja skoro 300 službenika američkog State Departmenta između 1950. i 1952. godine; Webb je bio državni podsekretar od početka 1949. do početka 1952. godine. U martu 2021. četiri naučnika objavila su mišljenje u časopisu Scientific American pozivajući NASA-u da preispita ime teleskopa, na osnovu Webbovog navodnog saučesništva u aktivnosti diskriminacije.[ U septembru 2021. NASA je objavila svoju odluku da ne preimenuje teleskop. O'Keefe, koji je donio odluku da se teleskop nazove po Webbu, izjavio je da je nepravda sugerirati da bi Web trebao "snositi odgovornost za tu aktivnost kada nema dokaza koji bi čak nagovijestili [da je on u tome učestvovao]". Američko astronomsko društvo poslalo je NASA-inom administratoru Billu Nelsonu dva pisma tražeći od NASA-e da objavi javni izvještaj sa detaljima o njihovoj istrazi. Mada, dokumenti iz žalbene presude iz 1969. (u vezi s otpuštanjem jednog zaposlenog iz 1963.) ukazuju na to da se otpuštanje homoseksualaca smatralo uobičajenim unutar agencije [29].

Misija[uredi | uredi izvor]

Poređenje sa nekim poznatim teleskopima

Primarna misija teleskopa je da traži svjetlost koja potiče od udaljenih zvijezda i galaksija, koje su se formirale neposredno poslije Velikog praska, da proučava nastanak i evoluciju galaksija, i da pokuša da objasni nastanak zvijezda i planetarnih sistema, kao i porijeklo života.

Reference[uredi | uredi izvor]

  1. ^ http://www.reuters.com/article/2011/11/16/us-usa-space-budget-idUSTRE7AF06320111116 Archived 2015-09-24 na Wayback Machine (en)
  2. ^ "NASA Completes Webb Telescope Review, Commits to Launch in Early 2021". NASA. 27. 6. 2018. Pristupljeno 27. 6. 2018.
  3. ^ Kaplan Sarah; Achenbach Joel (24. 7. 2018). "NASA's next great space telescope is stuck on Earth after screwy errors". The Washington Post. Pristupljeno 25. 7. 2018.CS1 održavanje: više imena: authors list (link)
  4. ^ January 2020, Meghan Bartels 29. "NASA's James Webb Space Telescope may miss March 2021 launch, GAO report says". Space.com (jezik: engleski). Pristupljeno 13. 4. 2020.
  5. ^ Fisher, Alise; Pinol, Natasha; Betz, Laura (11 July 2022). "President Biden Reveals First Image from NASA's Webb Telescope". NASA. Pristupljeno 12 jula 2022.
  6. ^ Lallo, Matthew D. (2012). "Experience with the Hubble Space Telescope: 20 years of an archetype". Optical Engineering. 51 (1): 011011–011011–19. arXiv:1203.0002. Bibcode:2012OptEn..51a1011L. doi:10.1117/1.OE.51.1.011011. S2CID 15722152.
  7. ^ "A Deeper Sky | by Brian Koberlein". briankoberlein.com.
  8. ^ Shelton, Jim (3 March 2016). "Shattering the cosmic distance record, once again". Yale University. Pristupljeno 13. juli 2022.
  9. ^ Oesch, P. A.; Brammer, G.; van Dokkum, P.; et al. (March 2016). "A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy". The Astrophysical Journal. 819 (2). 129. arXiv:1603.00461. Bibcode:2016ApJ...819..129O. doi:10.3847/0004-637X/819/2/129. S2CID 119262750.
  10. ^ "Comparison: Webb vs Hubble Telescope – Webb/NASA". www.jwst.nasa.gov. Pristupljeno 14. jula 2022.
  11. ^ "Infrared astronomy from earth orbit". Infrared Processing and Analysis Center, NASA Spitzer Science Center, California Institute of Technology. 2017. Archived from the original on 21 December 2016. Public Domain Ovaj članak sadrži tekst iz ovog izvora koji je u javnom vlasništvu.
  12. ^ "The Sunshield". nasa.gov. NASA. Retrieved 28 August 2016. Public Domain Ovaj članak sadrži tekst iz ovog izvora koji je u javnom vlasništvu.
  13. ^ "Sunshield Coatings Webb/NASA". jwst.nasa.gov. Archived from the original on 29 December 2021. Pristupljeno 18. jula 2022. Ovaj članak uključuje tekst iz ovog izvora koji je u javnom vlasništvu.
  14. ^ "JWST Wavefront Sensing and Control". Space Telescope Science Institute. Archived from the original on 5 August 2012. Pristupljeno 18. jula 2022.
  15. ^ Group, Techbriefs Media. "Webb Telescope Actuators Move with Microscopic Accuracy". www.techbriefs.com. Archived from the original on 19 March 2022. Pristupljeno 19. jula 2022.
  16. ^ Warden, Robert. "Cryogenic Nano-Actuator for JWST". ESMATS: 242.
  17. ^ "Science Instruments of NASA's James Webb Space Telescope Successfully Installed". NASA. 24 May 2016. Archived from the original on 19 March 2022. Pristupljeno 19. jula 2022. Ovaj članak sadrži tekst iz ovog izvora koji je u javnom vlasništvu.
  18. ^ "JWST: Integrated Science Instrument Module (ISIM)". NASA. 2017. Archived from the original on 2 June 2019. Pristupljeno 19. jula 2022. Ovaj članak sadrži tekst iz ovog izvora koji je u javnom vlasništvu.
  19. ^ Banks, Kimberly; Larson, Melora; Aymergen, Cagatay; Zhang, Burt (2008). Angeli, George Z.; Cullum, Martin J. (eds.). "James Webb Space Telescope Mid-Infrared Instrument Cooler systems engineering". Proceedings of SPIE. Modeling, Systems Engineering, and Project Management for Astronomy III. 7017: 5. Bibcode:2008SPIE.7017E..0AB.
  20. ^ Doyon, René; Hutchings, John B.; Beaulieu, Mathilde; Albert, Loic; Lafrenière, David; Willott, Chris; Touahri, Driss; Rowlands, Neil; Maszkiewicz, Micheal; Fullerton, Alex W.; Volk, Kevin; Martel, André R.; Chayer, Pierre; Sivaramakrishnan, Anand; Abraham, Roberto; Ferrarese, Laura; Jayawardhana, Ray; Johnstone, Doug; Meyer, Michael; Pipher, Judith L.; Sawicki, Marcin (22 August 2012). Clampin, Mark C; Fazio, Giovanni G; MacEwen, Howard A; Oschmann, Jacobus M (eds.). "The JWST Fine Guidance Sensor (FGS) and Near-Infrared Imager and Slitless Spectrograph (NIRISS)". Proceedings of SPIE. Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. 8442: 84422R. Bibcode:2012SPIE.8442E..2RD. doi:10.1117/12.926578. S2CID 120702854. "FGS features two modules: an infrared camera dedicated to fine guiding of the observatory and a science camera module, the Near-Infrared Imager and Slitless Spectrograph (NIRISS)"
  21. ^ de Weck, Olivier L.; Miller, David W.; Mosier, Gary E. (2002). "Multidisciplinary analysis of the NEXUS precursor space telescope". In MacEwen, Howard A. (ed.). Highly Innovative Space Telescope Concepts. Highly Innovative Space Telescope Concepts. Vol. 4849. p. 294. Bibcode:2002SPIE.4849..294D.
  22. ^ Brown, R. A. (1996). "1996swhs.conf..603B Page 603". Science with the Hubble Space Telescope – Ii: 603. Bibcode:1996swhs.conf..603B.
  23. ^ Thronson, H. A.; Hawarden, T.; Davies, J. K.; Lee, T. J.; Mountain, C. M.; Longair, M. (January 1991). "The Edison infrared space observatory and the universe at high redshifts". Advances in Space Research. 11 (2): 341–344. Bibcode:1991AdSpR..11b.341T.
  24. ^ Thronson, Harley, A., Jr.; Hawarden, Timothy G.; Bradshaw, Tom W.; Orlowska, Anna H.; Penny, Alan J.; Turner, R. F.; Rapp, Donald (1 November 1993). Bely, Pierre Y; Breckinridge, James B (eds.). "Edison radiatively cooled infrared space observatory". SPIE Proceedings. Space Astronomical Telescopes and Instruments II. SPIE. 1945: 92–99. doi:10.1117/12.158751. S2CID 120232788.
  25. ^ Dressler, A., ed. (1996). "Exploration and the Search for Origins: A Vision for Ultraviolet-Optical-Infrared Space Astronomy Report of the 'HST & Beyond' Committee". Stsci.edu. Association of Universities for Research in Astronomy.
  26. ^ Stockman, H. S. (June 1997). "The Next Generation Space Telescope. Visiting a time when galaxies were young". Space Telescope Science Institute, Baltimore, Maryland. The Association of Universities for Research in Astronomy, Washington, D.C.
  27. ^ Astronomy and Astrophysics Survey Committee; Board on Physics and Astronomy; Space Studies Board; Commission on Physical Sciences, Mathematics, and Applications; National Research Council (16 January 2001). Astronomy and Astrophysics in the New Millennium. Washington, D.C.: National Academies Press. doi:10.17226/9839.
  28. ^ Francis, Matthew. "The Problem With Naming Observatories For Bigots". Forbes. Archived from the original on 11 April 2022. Pristupljeno juli 2022.
  29. ^ Witze, Alexandra (25 March 2022). "Exclusive: Documents reveal NASA's internal struggles over renaming Webb telescope". Nature. 604 (7904): 15–16. Bibcode:2022Natur.604...15W. doi:10.1038/d41586-022-00845-6. PMID 35338365. S2CID 247713613.

Vanjski linkovi[uredi | uredi izvor]

Teleskop neće biti tačno na L2 poziciji, nego će orbitirati u "halo orbiti".