Injektivna funkcija

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web stranice ili drugi izvori).
Sporne rečenice i navodi bi mogli, ukoliko se pravilno ne označe validnim izvorima, biti obrisani i uklonjeni. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci, te nakon toga možete ukloniti ovaj šablon.
Injektivna funkcija (injekcija)
Druga injektivna funkcija (ova je bijekcija)
Neinjektivna funkcija (ova je slučajem surjekcija)

Za funkciju f(x)\colon X \rightarrow Y kažemo da je injektivna funkcija, ili samo injekcija, ako ne postoje dva različita elementa domena, a koji se preslikavaju u neki isti element iz kodomena.

To znači da se svi elementi iz domena preslikavaju u međusobno različite elemente iz kodomena (funkcija ne preslikava različite elemente u isti).

Zapisano simboličkom logikom, f(x)\colon X \rightarrow Y je injektivna ako vrijedi:

(\forall x_1, x_2 \in X)\  ((x_1 \neq x_2) \Rightarrow (f(x_1) \neq f(x_2))

što je ekvivalentno tvrdnji:

(\forall x_1, x_2 \in X)\ ((f(x_1) = f(x_2)) \Rightarrow (x_1 = x_2))

Primjeri[uredi | uredi izvor]

  • Za bilo koji skup X, funkcija identiteta na X je injektivna.
  • Funkcija f : R → R definisana sa f(x) = 2x + 1 je injektivna.
  • Funkcija g : R → R definisana sa g(x) = x2 nije injektivna, zato što (naprimjer) g(1) = 1 = g(−1). Međutim, ako je g ponovo definisana tako da su njen domen nenegativni realni brojevi [0,+∞), tada je g injektivna.
  • Eksponencijalna funkcija exp : RR definisana sa exp(x) = ex je injektivna (ali ne i surjektivna pošto nema preslikavanja u negativne brojeve).
  • funkcija prirodnog logaritma ln : (0, ∞) → R definisana sa x ↦ ln x je injektivna.
  • Funkcija g : R → R definisana sa g(x) = xnx nije injektivna, pošto je, naprimjer, g(0) = g(1).

Ostale osobine[uredi | uredi izvor]

  • ako su f i g injektivne, tada je f ∘ g injektivna.
Kompozicija dvije injektivne funkcije je injektivna funkcja.
  • Ako je g ∘ f inejektivna, tada je f injektivna (ali g ne mora biti).
  • f : X → Y je injektivna ako i samo ako, za bilo koje zadate funkcije g, h : W → X, kad god je f ∘ g = f ∘ h, tada je g = h. Drugim riječima, injektivne funkcije su tačno monomorfizmi u kategoriji skupa skupova.
  • Ako je f : X → Y injektivna, a A je podskup od X, tada je f −1(f(A)) = A. Zbog toga, A može biti dobijen iz svoje slike f(A).
  • Ako je f : X → Y injektivna, a A i B su podskupovi od X, tada je f(A ∩ B) = f(A) ∩ f(B).
  • Svaka funkcija h : W → Y može se dekomponovati kao h = f ∘ g za pogodnu injekciju f i surjekciju g.
  • Ako je f : X → Y injektivna funkcija, tada Y ima najmanje onoliko elemenata koliko ima skupa X, u smislu kardinalnih brojeva. Pojedinačno, ako, dodatno, postoji injekcija iz Y u X, tada X i Y imaju isti kardinalni broj. (Ovaj iskaz poznat je i kao Cantor–Bernstein–Schroederov teorem.)
  • Ako su i X i Y konačni sa istim brojem elemenata, tada je f : X → Y injektivna ako i samo ako je f surjektivna.

Također pogledajte[uredi | uredi izvor]

Zabilješke[uredi | uredi izvor]

Reference[uredi | uredi izvor]