Idi na sadržaj

Gödelove teoreme nepotpunosti

S Wikipedije, slobodne enciklopedije

Gödelove teoreme nepotpunosti su dvije teoreme matematičke logike[1] koje uspostavljaju inherentno ograničenje svih trivialnih aksiomatičnih sistema koji dozvoljavaju aritmetiku. Ove teoreme, koje je dokazao Kurt Gödel 1931. godine, su obje važne u matematičkoj logici i u filozofiji matematike. Ove teoreme su široko prihvaćene, doduše ne i univerzalno, interpretirane kao pokaz da je Hilbertov program pronalaska kompletnog i konzistentog seta aksioma za cijelu matematiku, nemoguć.

Ove teoreme predstavljaju jedan od vrhunaca matematičke i logičke misli dvadesetog vijeka, a Gödel se smatra jednim od najvećih mislilaca čovječanstva.

Također pogledajte

[uredi | uredi izvor]

Reference

[uredi | uredi izvor]
  1. ^ Raduka, Marko. "Gˆdelovi teoremi nepotpunosti" (PDF). pazishkola.tripod.com. Pristupljeno 5. 6. 2018.


Nedovršeni članak Gödelove teoreme nepotpunosti koji govori o matematici treba dopuniti. Dopunite ga prema pravilima Wikipedije.