Četverougao

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web stranice ili drugi izvori).
Sporne rečenice i navodi bi mogli, ukoliko se pravilno ne označe validnim izvorima, biti obrisani i uklonjeni. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci, te nakon toga možete ukloniti ovaj šablon.

Četverougao je centralno simetričan sa centrom simetrije u tački O (presjek dijagonala AC i BD). U ovom slučaju suprotni vrhovi A i C ; B i D su centralno simetrični u odnosu na tačku O.

Iz ovog proizlazi da je tačka O centar duži AC i BD. Vrijedi i obrnuto. Ako dijagonale AC i BD četverougla ABCD imaju zajedničku središte onda su A i C ; B i D centralno simetrični parovi tačaka prema tački O . Četverougao ABCD preslikava se u četverougao CDAB, tj na samog sebe. To znači da je tačka O centar simetrije tog četverougla. Da bi četverougao bio centralno simetričan potrebno je i dovoljno da dijagonale imaju zajedničko središte, koje je njihov centar simetrije Iz osobine centralno simetričnih figura da su suprotne stranice paralelne i jednake proizlazi da je to paralelogram.

Teorema 1

  • Centralno simetričan četverougao ima ove osobine
  • Dijagonale mu se polove
  • Naspramne stranice su mu paralelne ( on je paralelogram)
  • Naspramne stranice su mu jednake
  • Naspramni uglovi su mu jednaki
  • Susjedni uglovi su suplementni.

Podjela četverouglova[uredi | uredi izvor]

  1. trapez
  2. paralelogram
  3. pravougaonik
  4. kvadrat
  5. romb
Commons logo
U Wikimedijinom spremniku se nalazi još materijala vezanih uz: