Bezuslovna konvergencija

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web-stranice ili drugi izvori).
Ako se pravilno ne potkrijepe validnim izvorima, sporne rečenice i navodi mogli bi biti obrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.

U matematičkoj analizi, red u Banachovom prostoru X je bezuslovno konvergentan ako za svaku permutaciju red

konvergira.

Ovo označavanje često se definiše u ekvivalentnom obliku: Red je bezuslovno konvergentan ta svaki niz , sa , red

konvergira.

Svaki apsolutno konvergentan red je bezuslovno konvergentan, ali konverzivna implikacija ne važi u općem slučaju. Kada je , tada je, po Riemannovom teoremu o redu, bezuslovno konvergentan ako i samo ako je apsolutno konvergentan.

Također pogledajte[uredi | uredi izvor]

Reference[uredi | uredi izvor]

  • Ch. Heil: A Basis Theory Primer
  • K. Knopp: "Theory and application of infinite series"
  • K. Knopp: "Infinite sequences and series"
  • P. Wojtaszczyk: "Banach spaces for analysts"