Površ

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web-stranice ili drugi izvori).
Ako se pravilno ne potkrijepe validnim izvorima, sporne rečenice i navodi mogli bi biti obrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.

Površ je dvoparametarski skup tačaka u prostoru, tj. skup tačaka prostora čije su koordinate funkcije dva parametra u i v. Naprimjer, funkcije krivolinijskih koordinata tačke na površi. U ovom se pretpostavlja da ove funkcije imaju izvode do nekog reda. Ako su u i v krivolinijske koordinate na površi, onda se površ može odrediti jednačinama:

x=x(u,v), \; y=y(u,v), \; z=z(u,v),

gdje su x, y, z diferencijabilne skalarne funkcije.

odnosno

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k gdje su x, y, z realne funkcije klase C^1(U) tj. imaju neprekidne prve parcijalne derivacije na U.

koje se nazivaju parametarske jednačine površi.

Površ drugog reda je skup svih tacaka trodimenzionalnog prostora koje zadovoljavaju jednačinu

Ax^2 +By^2+Cz^2+Dxy+Exz+Fyz+Gx+Hy+Iz+K=0

za bar jedan A,B,C,D,E \ne 0 tj. u formuli postoji barem jedan netrivijalni nelinearni član.

primjer

sfera O(R) se može odrediti parametarskim jednačinama:

x=R\cos u \cos v, \quad y=R\cos u \sin v, \quad z=R\sin u,

gdje je u širina, v dužina tačke na sferi. Eliminisanjem (isključenjem) u i v iz ovih jednačina dobija se poznata jednačina sfere:

x^2+y^2+z^2=R^2.\,

Jednačina sfere (loptine površi) radijusa r s centrom u tački (x_0,y_0,z_0) data je sa

\displaystyle (x-x_0)^2 +(y-y_0)^2+(z-z_0)^2=r^2

Ovom formulom su zadane dvije funkcije dvije varijable:

z=f_1(x,y)=z_0+\sqrt{r^2-(x-x_0)^2-(y-y_0)^2}
z=f_2(x,y)=z_0-\sqrt{r^2-(x-x_0)^2-(y-y_0)^2}

Nivo-površi sfere (presjeci s ravnima paralelnim s xy ravni) i presjeci s ravnima paralelnim s  xz i yz ravnima su kruznice.

Jednačina površi se može zadati i u drugim oblicima, naprimjer, u obliku:

f(x,y,z)=0,\, ili z=f(x,y).\,

Regularne i singularne tačke površi[uredi | uredi izvor]

Parcijalne derivacije vektorske funkcije

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k) su, prema pretpostavci, neprekidne vektorske funkcije r_u, r_v : U \to R^3 date formulama:

r_u(u, v) = x_u(u, v)i + y_u(u, v)j + z_u(u, v)k

r_v(u, v) = x_v(u, v)i + y_v(u, v)j + z_v(u, v)k

Jacobijeva matrica parametrizacije (U, r) je matrica oblika:


\mathfrak{J}(r)=\begin{bmatrix}
  r_u(u, v     \\
  r_v(u, v\\ 
  
\end{bmatrix}=\begin{bmatrix}

x_u(u, v) \ y_u(u, v) \ z_u(u, v)  \\
 x_v(u, v) \ y_v(u, v) \ z_v(u, v) 
  
\end{bmatrix}

Sljedeće četiri tvrdnje su ekvivalentne:

  1. Vektori r_u(u, v) i r_v(u, v) linearno su nezavisni.
  2. r_u(u, v) × r_v(u, v)≠ 0
  3. Matrica \mathfrak{J}(r)(u, v) je ranga 2.
  4. Barem jedna od funkcijskih determinanti

\begin{vmatrix}
  x_u(u, v) \ y_u(u, v)  \\

x_v(u, v) \ y_v(u, v
\end{vmatrix} \begin{vmatrix}
  x_u(u, v) \ z_u(u, v)  \\

x_v(u, v) \ z_v(u, v
\end{vmatrix} \begin{vmatrix}
  y_u(u, v) \ z_u(u, v)  \\

y_v(u, v) \ z_v(u, v
\end{vmatrix} je različita od nule.

Za tačku T površi F koja odgovara uređenom paru (u_0, v_0) kažemo da je regularna tačka parametrizacije (U, r) ako je

r_u(u_0, v_0) × r_v(u_0, v_0)≠ 0

Za tačku T površi F koja odgovara uređenom paru (u_0, v_0) kažemo da je singularna tačka parametrizacije (U, r) ako je

r_u(u_0, v_0) × r_v(u_0, v_0)= 0

Neka površ \mathfrak{F} može imati više različitih parametrizacija. Tačka površi koja je singularna za jednu parametrizaciju nemora biti singularna i za ostale njezine parametrizacije.

Za površ \mathfrak{F} kažemo da je regularna ako svaka njezina tačka ima u \mathfrak{F} okolinu s regularnom parametrizacijom.

Za tačku S \in \mathfrak{F} kažemo da je singularna tačka površi ako je ona singularna tačka svake njene parametrizacije.

Sfera je primjer regularne površi koja se ne može pokriti jednom regularnom parametrizacijom.

Standardna parametrizacija sfere poluprečnika r je


(u, v) \to r(cos u sin v, sin u sin v, cos v)

gdje je (u, v) \in [0, 2\pi] × [ - \pi /2, \pi /2].

Pri toj parametrizaciji u-krive (v je konstanta) nazivamo paralelama, a v-krive (u je konstanta) meridijanima. Polovi, tj. tačke (0, 0,\pm r), singularne su tačke te parametrizacije. Međutim, svaka se sfera može pokriti već s dvije regularne parametrizacije.

U sigularnoj tački površ samu sebe siječe, dodiruje i sl. Ako su sve toačke neke krive na površi singularne, onda takvu liniju nazivamo singularnom linijom površi.

Krivolinijski ili Gaussov koordinatni sistem na površ[uredi | uredi izvor]

Ako se u jednačinama

x = x(u, v), y = y(u, v), z = z(u, v)

za jedan parametar uzme konstanta, dok drugi mijenja vrijednosti unutar područja U, parametarski je zadana prostorna kriva koja leži na zadanoj površi.

Tako je za v = v_0 jednačina

x = x(u, v_0), y = y(u, v_0), z = z(u, v_0)

parametarski zadana tzv. u − kriva površi, a za u = u_0 jednačina

x = x(u_0, v), y = y(u_0, v), z = z(u_0, v)

parametarski je zadana tzv. v − kriva površi. Na taj način će za različite konstante u = u_i, v = v_k, (i, k \in R) na zadanoj površi nastati dva sistema prostornih krivi pri čemu svaka kriva jednog sistema siječe svaku krivu drugog sistema u jednoj i samo jednoj toački.

Svaka tačka na površii biće određena sjecištem dviju prostornih kriviiz različitih sistema. Takve krive nazivamo koordinatnim ili parametarskim krivama površi. Odabirom po jedne krive iz svakog sistema za koordinantne ose, a njihovog sjecišta za ishodište, uspostavlja se krivolinijski ili Gaussov koordinatni sistem na površi. Svakoj tački površi pridružena su dva realna broja u_0 i v_0, tzv. krivolinijske ili Gaussove koordinate tačke, koje određuju krive prvog i drugog sistema koje se sijeku u toj tački.

Prema pretpostavci, funkcije iz jednačine

x = x(u, v), y = y(u, v), z = z(u, v)

imaju neprekidne prve parcijalne derivacije po u i po v, koordinatne krive u svakoj svojoj tački imaju tangentu.

Vektori

r_u(u, v) = x_u(u, v)i + y_u(u, v)j + z_u(u, v)k

r_v(u, v) = x_v(u, v)i + y_v(u, v)j + z_v(u, v)k

vektori su tangenata koordinatnih krivi. Njihove su dužine:

|ru| =\sqrt{ (x_u)^2 + (y_u)^2 + (z_u)^2}= \sqrt{ (x_v)^2 + (y_v)^2 + (z_v)^2}

Eksplicitna jednačina površi[uredi | uredi izvor]

Neka je \mathfrak{U} područje (otvoren i povezan skup) u R^2 i neka f :U \to R ima na \mathfrak{U} neprekidne prve parcijalne derivacije po x i y . Graf funkcije f nazivamo regularnom (glatkom) površi.

Jednačinu takve površi nazivamo eksplicitnom i ona glasi z = f ( x, y) Da bi se s parametarskog oblika zadavanja površi moglo preči na eksplicitan oblik barem jedna od funkcijskih determinanti (iv) mora biti različita od nule.

\begin{vmatrix}
x_u(u_0, v_0)& y_u(u_0, v_0) \\
  x_v(u_0, v_0)& x_v(u_0, v_0)
\end{vmatrix} \ne 0

Možemo izvršiti inverziju prvih dviju jednačina od x=x(u,v), \; y=y(u,v), \; z=z(u,v), i postaviti dvije nove, jednoznačine, neprekidne funkcije u (x, y) i v(x, y)koje imaju neprekidne prve parcijalne derivacije u okolini tačke (x_0, y_0 koja odgovara tački (u_0, v_0).

Pri tome vrijedi

u (x_0,  y_0) = u_0 i v (x_0,  y_0) = v_0

Nakon uvrštavanja tih dviju funkcija u jednačinu z=z(u,v) nastaje jednoznačnu, složena i neprekidna funkcija

z_1 od x i y, a jednačina

z = z(u(x, y), v (x, y)) =z_1(x, y)

predstavlja eksplicitan oblik zadavanja površi. Ako su uvažene sve pretpostavke, funkcija z_1 mora imati neprekidne prve parcijalne derivacije po x i y.

Implicitna jednačina površi[uredi | uredi izvor]

Neka je \mathfrak{U} područje u R^3 i neka je funkcija F: U\to R klase C^1(\mathfrak{U}) tj. prve parcijalne derivacije F_x, F_y, F_z :\mathfrak{U} \to R su neprekidne funkcije na \mathfrak{U}

Jednačinu

F(x, y, z) = 0

nazivamo implicitnom površi, ako postoji barem jedna tačka (x_, y_0, z_0) takva da zadovoljava jednačinu i da je u njoj barem jedna od parcijalnih derivacija F_x, F_y, F_z različita od 0. Ovaj uslov osigurava egzistenciju regularnog dijela površi.

Ako je F_z(x_0, y_0, z_0) \to 0, postoji jednoznačna, neprekidna funkcija z =z (x, y) koja u okolini tačke (x_0, y_0) identički zadovoljava vezu

F (x, y, z(x, y)) = 0

i u toj tački funkcija z ima neprekidne prve parcijalne derivacije po x i y.

Tačku (x_0, y_0, z_0) u kojoj su ispunjeni navedeni uslovi zovemo običnom ili regularnom tačkom površi.

Kako bi barem jedna od parcijalnih derivacija funkcije F bila različita od nule, za regularnu tačku površi mora biti zadovoljen uslov

F_x^2(x_0, y_0, z_0)+ F_y^2(x_0, y_0, z_0)+ F_z^2(x_0, y_0, z_0) \to 0

Kako je (x_0, y_0, z_0) singularna toačka implicitno zadane površi ako ona zadovoljava jednačinu F(x, y, z) = 0 i ako vrijedi

F_x(x_0, y_0, z_0)+ F_y(x_0, y_0, z_0)+ F_z(x_0, y_0, z_0) = 0

Tangentna ravan i normala na površ[uredi | uredi izvor]

Bilo koja kriva na regularnoj površi F zadanoj vektorskom jednačinom

r(u, v) =x(u, v)i+y(u, v)j+z(u, v)k

može biti zadana parametarskom jednačinom 
u =u(t), v=v(t)

gdje za \forall t \in (a, b)\notin R vrijedi da se (u(t), v(t)) nalazi u području \mathfrak{U}, a funkcije u(t) i v(t) neprekidne su funkcije od t.

Ako kriva u svakoj tački ima tangentu moraju i derivacije u'(t) i v'(t) biti neprekidne. Kriva mora zadovoljavati jednačinu površi, vektori tačaka na krivoj dati su izrazom

r = r((u(t), v(t))

Vektor tangente na tu krivu je

r'(t) =r_u (u, v) (t) +r_v (u, v)v'(t)

Proizvoljnom čvrstom tačkom T(u, v) površi \mathfrak{F} prolazi beskonačno mnogo prostornih krivi koje leže na površi. Za sve takve krive vektori r_u(u, v) i r_v(u, v) biće jednaki, budući da oni zavise samo o koordinatama u i v tačke T, dok ́će derivacije u'(t) i v'(t) za pojedine krive biti različite. Svi vektori tangenata na krivu koje prolaze tačkom T linearne su kombinacije vektora

r_u(u, v) = x_u(u, v)i + y_u(u, v)j + z_u(u, v)k

r_v(u, v) = x_v(u, v)i + y_v(u, v)j + z_v(u, v)k

Tangente prostornih krivi koje su na površi i prolaze tačkom T leže u ravni koju određuju tangentni vektori koordinatnih krivi te tačke. Ta se ravan naziva tangentna ravan na površ u tački T, a tačka T je njeno diralište.

Jednadnačina tangentne ravnine u parametarskom obliku je

r =r_0(u, v) + \rho _1r_u+\rho _1r_v

gdje je r radijus-vektor bilo koje tačke tangenne ravni, r_0 radijus- vektor dirališta T, a \rho _1 i \rho _2 realni parametri koji poprimaju, nezavisno jedan o drugom, vrijednosti između -\infty i + \infty

Vektor

r_ux r_v=\begin{vmatrix}
  i & j& k \\
  x_u & y_u & z_u \\
 x_v & y_v & z_v 
\end{vmatrix}


normalan je na vektore

r_u(u, v) = x_u(u, v)i + y_u(u, v)j + z_u(u, v)k

r_v(u, v) = x_v(u, v)i + y_v(u, v)j + z_v(u, v)k

i prema tome i na tangentnu ravan u tački T. Naziva se vektorom normale površi.

r_u(u, v) = x_u(u, v)i + y_u(u, v)j + z_u(u, v)k

r_v(u, v) = x_v(u, v)i + y_v(u, v)j + z_v(u, v)k Vektori

svojim međusobnim položajem određuju orjentaciju u tangentnoj ravni te tačke. Ona je pozitivna ako prvi vektor prelazi na drugi vektor vrtnjom za neki ugao u pozitivnom smislu (suprotno smjeru kazaljke na satu).

Vektor

n_0= (r_ux r_v)/\begin{Vmatrix}
  r_uxr_v
 \end{Vmatrix}

naziva se jediničnim vektorm normale površi. On ima pozitivnu orijentaciju ako s pozitivnim smjerom vrtnje u tangentnoj ravni tačke T čini desni vijak. Kako vektor r-r_0 leži u tangentnoj ravni, koja ja normalna na vektor normale. Jednaćina tangentne ravni može se napisati pomoću mješovitog proizvoda

(r-r_0)*(r_ux r_v=0

Može se napisati i u skalarnim komponentama pomoću determinante


\begin{vmatrix}
  x-x_0 & y-y_0 & z-z_0 \\
  x_u & y_u & z_u\\
x_v & y_v & z_v
\end{vmatrix}=0

gdje su x,y,z koordinate bilo koje tačke tangentne ravni, x-0, y_0, z_0 koordinate dirališta T, a u derivacije koordinata uvrštavaju se vrijednosti u i v koje odgovaraju tački T.

Jednačina normale površi u tački T je

r =r_0+\rho(r_u × r_v)

gdje je \rho realni parametar koji prima vrijednosti između -\infty i +\infty

Linijske površi[uredi | uredi izvor]

Linijska površ je skup pravih prostora neprekinuto povezanih po nekom zakonu . Nastaju na sljedeći način:

  • klizanjem prave po nekoj prostornoj krivoj. Prava koja klizi naziva se izvodnica ili generatrisa, a kriva po kojoj klize, ravnalica ili greben površi
  • povezivanjem triju krivih (ravnalica) transverzalama.

Ako su za ravnalice odabrane algebarske krive, nastaje algebarska površ. Za ovaj prikaz bitne su samo površi koje nastaju povezivanjem triju algebarskih ravnalica transverzalama.

Njihova se konstrukcija može izvesti na sljedeći način:

Neka su zadane krive k_1, k_2 i k_3. Na krivoj k_1 uoči se tačka A koja pravim spoji sa svim talkama krive k_2 čime je formirana kupa F.

Kriva k_3 probada kupu F u konačnom broju tačaka.

Jednim tako dobivenim probodištem prolazi izvodnica kupe F, a to je ujedno i transverzala krivih k_1, k_2 i k_3. Taj se postupak ponavlja za ostale tačke krive k_1čcime je formiran jednoparametarski skup izvodnica i. Sve takve izvodnice i čine linijsku površ.

Teorema (o redu linijske povrsi)

Ako su algebarske krive k_1, k_2 i k_3 redova n_1, n_2 i n_3. i ako se krive k_1, k_2 sijeku u s_3 tačaka krive k_1 i k_3 u s_2, a krive k_2 i k_3 u s_1 tacaka, tada je linijska površ zadana krivama k_1, k_2 i k_3 reda:

 R=2n_1n_2n_3- (s_3n_3+ s_2n_2+ s_1n_1)

Svaka algebarska linijska površ ima stepen.

Linijske površi mogu biti razmotive i nerazmotive ili vitopere. Vitopere linijske površi ne mogu se razmotati u ravni jer su im svake dvije neizmjerno blize izvodnice mimoilazne prave.

Elipsoid[uredi | uredi izvor]

Elipsoid (troosi)

\displaystyle \frac{(x^2}{a^2}+ \frac{y^2}{b^2}+\frac{z^2}{c^2}=1

Ako je a > b > c > 0 tada kažemo da je a velika poluosa, b srednja poluosa i c mala poluosa elipsoida.

Ako su dvije poluose jednake, npr. a > b = c > 0 tada dobijemo rotacioni elipsoid. Ako su sve tri poluose jednake dobijamo sferu ili loptinu površ.

\displaystyle \frac{(x-x_0)2}{a^2}+ \frac{(y-y_0)2}{b^2}+\frac{(z-z_0)2}{c^2}=1

je jednačina elipsoida čije su glavne ose paralne s koordinatnim osama x, y , z , a dužine poluosa su a,b , c redom.

Nivo plohe elipsoida kao i presjeci s ravnima paralelnim s xz i yz ravnima su elipse.

Hiperboloid[uredi | uredi izvor]

Jednokrilni hiperboloid zadan je formulom \displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1

Dvokrilni hiperboloid zadan je s formulom

\displaystyle -\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{z^2}{c^2}=1

Nivo površi hiperboloida su elipse, a presjeci s ravnima koje su paralelne s z osom su hiperbole. Kao i kod ostalih površi, pomoću transformacije x\to x-x_0 pomićemo središte hiperboloida, a cikličkom zamjenom varijabli nastaju hiperboloidi koji se protežu u smjeru ostalih koordinatnih osi.

Konusne površi[uredi | uredi izvor]

Konus (kupa) je zadana formulom

\displaystyle (z-z_0)^2=\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}

Ovim izrazom su zadane dvije funkcije od dvije varijable:

\displaystyle z=z_0 + \sqrt{\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}} \quad \textrm{i} \quad z=z_0 - \sqrt{\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}}.

Želimo pronaći jednačinu konusne površi čije izvodnice prolaze kroz koordinantni početak koordinatnog sistema i kroz tačke krive F(x, y) = 0, z = 1 Na toj krivoj odaberimo proizvoljnu tačku T_0(x_0, y_0, 1).

Jednačina izvodnice (prave) kroz tačke O(0, 0, 0) i T_0(x_0, y_0, 1) glasi

\frac{x}{x_0}=\frac{x}{y_0}=\frac{z}{1}

Vrijedi:

x = zx_0 = > x_0=\frac{x}{z}

y = zy_0 = > y_0=\frac{y}{z}

Jednačina konusne površi čije izvodnice prolaze kroz koordinantni početak i kroz tačke krive

F(x, z) = 0, y = 1

Kako tačka T_0(x_0, y_0, 1) leži na krivoj mora vrijediti F(x_0, y_0) = 0 dobijamo opštu jednačinu konusne površi

F(\frac{x}{z}), \frac{y}{z})=0

Jednačina konusne površi čije izvodnice prolaze kroz koordinantni početak i kroz tačke krive

F(x, z) = 0 i y = 1 je
F(\frac{x}{y}), \frac{z}{y})=0

Valjkaste površi[uredi | uredi izvor]

  • Izvodnica je paralelna sa osom OZ i prolazi kroz krivu F(x, y) = 0 z = 0

Opšta jednačina površi data je sa F(x, y) = 0(nedostaje z)

  • Izvodnica je paralelna sa osom OX i prolazi kroz krivu F(y, z) = 0 x = 0

Opšta jednačina površi data je sa F(y, z) = 0 (nedostaje x)

  • Izvodnica je paralelna sa osom OY i prolazi kroz krivu F(x, z) = 0 y = 0

Opšta jednačina površi data je sa F(x, z) = 0 (nedostaje y)

Rotacione površi[uredi | uredi izvor]

Jednačina rotacione površi koja nastaje rotacijom krive z = f(y) oko ose OZ

Neka je \rho = \sqrt{x^2+y^2} udaljenost proizvoljne tačke T(x, y, z) rotacione povrsi od ose OZ. Tada je jednačina rotacione površi kojoj je osa OZ osa rotacije data sa

z= f(\rho) = f(\sqrt{x^2+y^2})

uopšteno sa

F(z, x^2 +y^2) = 0

Jednačina rotacione površi koja nastaje rotacijom krive x = f(z) ili f(y) oko ose OX data je sa

z= f(\rho) = f(\sqrt{y^2+z^2})

uopšteno sa

F(x, y^2 +z^2) = 0

Jednačina rotacione površi koja nastaje rotacijom krive x = f(xz) ili f(z) oko ose OX je data sa

z= f(\rho) = f(\sqrt{x^2+z^2})

uopšteno sa

F(y, x^2 +z^2) = 0

Izvori[uredi | uredi izvor]

Plohe drugog reda

NATKRIVANJE PARABOLIČKIM KONOIDOM

Valjkaste (cilindrične) plohe

Gaussova i srednja zakrivljenost ploha