S Wikipedije, slobodne enciklopedije
Ovaj članak ili neki od njegovih odlomaka nije dovoljno potkrijepljen izvorima (literatura, veb-sajtovi ili drugi izvori).
Ako se pravilno ne potkrijepe pouzdanim izvorima, sporne rečenice i navodi mogli bi biti izbrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.
Kosinus je parna trigonometrijska funkcija oblika:
y
=
a
cos
(
ω
x
+
ϕ
)
;
{\displaystyle y=a\cos(\omega x+\phi );\,}
. Ova jednačina ima i oblik:
y
=
a
sin
(
ω
x
+
ϕ
+
π
2
)
.
{\displaystyle y=a\sin(\omega x+\phi +{\frac {\pi }{2}}).}
.
Grafik ove funkcije naziva se kosinusoida , koji presjeca x-osu u
[
(
k
+
1
2
)
π
,
0
]
{\displaystyle \left[\left(k+{\frac {1}{2}}\right)\pi ,\;0\right]}
ekstremi su tačke :
[
k
π
,
(
−
1
)
n
]
.
{\displaystyle [k\pi ,\;(-1)^{n}].}
Kosinus je parna funkcija
cos
(
−
α
)
=
−
c
o
s
α
{\displaystyle \cos(-\alpha )=-cos\alpha }
Kosinus je periodična funkcija
sin
(
2
k
π
±
α
)
=
s
i
n
α
{\displaystyle \sin(2k\pi \pm \alpha )=sin\alpha }
Nula funkcije
c
o
s
α
=
0
=>
α
=
π
2
+
k
π
{\displaystyle cos\alpha =0=>\alpha ={\frac {\pi }{2}}+k\pi }
Maksimum funkcije
c
o
s
α
=
1
=>
α
=
2
k
π
{\displaystyle cos\alpha =1=>\alpha =2k\pi }
Minimum funkcije
c
o
s
α
=
−
1
=>
α
=
(
2
k
+
1
)
π
{\displaystyle cos\alpha =-1=>\alpha =(2k+1)\pi }
c
o
s
(
α
+
π
2
)
=
−
sin
α
{\displaystyle cos(\alpha +{\frac {\pi }{2}})=-\sin \alpha }
cos
(
α
+
π
)
=
−
cos
α
{\displaystyle \cos(\alpha +\pi )=-\cos \alpha }
c
o
s
(
α
+
2
π
)
=
cos
α
{\displaystyle cos(\alpha +2\pi )=\cos \alpha }
cos
(
α
±
β
)
=
cos
α
cos
β
∓
sin
α
sin
β
{\displaystyle \cos(\alpha \pm \beta )=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \,}
cos
2
α
=
cos
2
α
−
sin
2
α
=
2
cos
2
α
−
1
=
1
−
2
sin
2
α
=
1
−
tan
2
α
1
+
tan
2
α
{\displaystyle {\begin{aligned}\cos 2\alpha =\cos ^{2}\alpha -\sin ^{2}\alpha =2\cos ^{2}\alpha -1=1-2\sin ^{2}\alpha ={\frac {1-\tan ^{2}\alpha }{1+\tan ^{2}\alpha }}\end{aligned}}}
cos
3
α
=
cos
3
α
−
3
sin
2
α
cos
α
=
4
cos
3
α
−
3
cos
α
{\displaystyle {\begin{aligned}\cos 3\alpha =\cos ^{3}\alpha -3\sin ^{2}\alpha \cos \alpha =4\cos ^{3}\alpha -3\cos \alpha \end{aligned}}}
cos
α
2
=
±
1
+
cos
α
2
{\displaystyle \cos {\frac {\alpha }{2}}=\pm \,{\sqrt {\frac {1+\cos \alpha }{2}}}}
cos
2
α
=
1
+
cos
2
α
2
{\displaystyle \cos ^{2}\alpha ={\frac {1+\cos 2\alpha }{2}}\!}
cos
α
cos
β
=
cos
(
α
−
β
+
cos
(
α
+
β
)
2
{\displaystyle \cos \alpha \cos \beta ={\cos(\alpha -\beta +\cos(\alpha +\beta ) \over 2}}
cos
α
+
cos
β
=
2
cos
(
α
+
β
2
)
cos
(
α
−
β
2
)
{\displaystyle \cos \alpha +\cos \beta =2\cos \left({\frac {\alpha +\beta }{2}}\right)\cos \left({\frac {\alpha -\beta }{2}}\right)}
cos
α
−
cos
β
=
−
2
sin
(
α
+
β
2
)
sin
(
α
−
β
2
)
{\displaystyle \cos \alpha -\cos \beta =-2\sin \left({\frac {\alpha +\beta }{2}}\right)\sin \left({\frac {\alpha -\beta }{2}}\right)}
cos
(
α
)
=
e
i
x
+
e
−
i
x
2
{\displaystyle \cos(\alpha )={\frac {e^{ix}+e^{-ix}}{2}}\;}
za
i
2
=
−
1
{\displaystyle i^{2}=-1}
cos
x
=
∏
n
=
1
∞
(
1
−
x
2
π
2
(
n
−
1
2
)
2
)
{\displaystyle \cos x=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{\pi ^{2}(n-{\frac {1}{2}})^{2}}}\right)}
Zlatni rez
cos
(
π
5
)
=
cos
36
∘
=
5
+
1
4
=
φ
2
{\displaystyle \cos \left({\frac {\pi }{5}}\right)=\cos 36^{\circ }={{\sqrt {5}}+1 \over 4}={\frac {\varphi }{2}}}
lim
x
→
0
1
−
cos
x
x
=
0
,
{\displaystyle \lim _{x\rightarrow 0}{\frac {1-\cos x}{x}}=0,}
(
c
o
s
x
)
′
=
−
sin
x
{\displaystyle (cosx)'=-\sin x}
Inverzna funkcija funkcije
cos
θ
=
e
i
θ
+
e
−
i
θ
2
{\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}\,}
je funcija
e
i
θ
+
e
−
i
θ
=
(
cos
θ
+
i
sin
θ
)
+
(
cos
θ
−
i
sin
θ
)
=
2
⋅
cos
θ
⇒
cos
θ
=
e
i
θ
+
e
−
i
θ
2
{\displaystyle \mathrm {e} ^{\mathrm {i} \theta }+\mathrm {e} ^{-\mathrm {i} \theta }=(\cos \theta +\mathrm {i} \sin \theta )+(\cos \theta -\mathrm {i} \sin \theta )=2\cdot \cos \theta \Rightarrow \cos \theta ={\mathrm {e} ^{\mathrm {i} \theta }+\mathrm {e} ^{-\mathrm {i} \theta } \over 2}}
arccos
x
=
−
i
ln
(
x
+
x
2
−
1
)
{\displaystyle \arccos x=-i\ln \left(x+{\sqrt {x^{2}-1}}\right)\,}
Koristi se za određivanje veličine ugla , kada je poznata vrijednost njegovog kosinusa.
a
r
c
c
o
s
(
x
)
=
π
2
−
arcsin
(
x
)
{\displaystyle \ arccos(x)={\frac {\pi }{2}}-\arcsin(x)}
arccos
(
−
x
)
=
π
−
arccos
(
x
)
{\displaystyle \arccos(-x)=\pi -\arccos(x)}
arccos
(
1
x
)
=
arcsec
(
x
)
{\displaystyle \arccos \left({\frac {1}{x}}\right)=\operatorname {arcsec}(x)}
arccos
(
x
)
=
arcsin
(
1
−
x
2
)
,
if
0
≤
x
≤
1
{\displaystyle \arccos(x)=\arcsin \left({\sqrt {1-x^{2}}}\right)\,,{\text{ if }}0\leq x\leq 1}
arccos
(
x
)
=
1
2
arccos
(
2
x
2
−
1
)
,
if
0
≤
x
≤
1
{\displaystyle \arccos(x)={\frac {1}{2}}\arccos \left(2x^{2}-1\right)\,,{\text{ if }}0\leq x\leq 1}
arccos
(
x
)
=
2
arctan
(
1
−
x
2
1
+
x
)
,
if
−
1
<
x
≤
+
1
{\displaystyle \arccos(x)=2\arctan \left({\frac {\sqrt {1-x^{2}}}{1+x}}\right)\,,{\text{ if }}-1<x\leq +1}
d
d
x
arcsin
(
z
)
=
1
1
−
z
2
{\displaystyle {\frac {d}{dx}}\arcsin(z)={\frac {1}{\sqrt {1-z^{2}}}}}
arccos
(
x
)
=
∫
x
1
1
1
−
z
2
|
x
|
≤
1
{\displaystyle \arccos(x)=\int _{x}^{1}{\frac {1}{\sqrt {1-z^{2}}}}\,|x|{}\leq 1}
arccos
(
z
)
=
π
2
−
arcsin
(
z
)
=
π
2
−
(
z
+
(
1
2
)
z
3
3
+
(
1
⋅
3
2
⋅
4
)
z
5
5
+
⋯
)
=
π
2
−
∑
n
=
0
∞
(
2
n
n
)
z
2
n
+
1
4
n
(
2
n
+
1
)
;
|
z
|
≤
1
{\displaystyle \arccos(z)={\frac {\pi }{2}}-\arcsin(z)={\frac {\pi }{2}}-\left(z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\cdots \right)={\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {{\binom {2n}{n}}z^{2n+1}}{4^{n}(2n+1)}}\,;\qquad |z|\leq 1}