Kroneckerova lema

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web-stranice ili drugi izvori).
Ako se pravilno ne potkrijepe validnim izvorima, sporne rečenice i navodi mogli bi biti obrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.

U matematici, Kroneckerova lema je rezultat odnosa između konvergencije beskonačnih suma i konvergencije redova. Lema se često koristi kao dio dokaza teroma o sumama nezavisnih slučajnih promjenljivih kao što je zakon velikih brojeva. Lema je dobila naziv po njemačkom matematičaru Leopoldu Kroneckeru.

Lema[uredi | uredi izvor]

Ako je beskonačan niz realnih brojeva takav da

postoji i da je konačna, tada imamo za i da vrijedi

Dokaz[uredi | uredi izvor]

Neka označava parcijalnu sumu od x'. Koristeći sumiranje po članovima,

Izabiremo bilo koji broj ε > 0. Zatim biramo N tako da je za ε blizu s za k > N. Ovo se može uraditi kako red konvergira u s. Tada je desna strana jednaka:

Sada, neka n ide u beskonačnost. Prvi član teži u s, koji se poništi sa trećim članom. Drugi član teži u nulu (pošto je suma fiksan broj). Pošto je red b rastući, zadnji član je ograničen sa .

Reference[uredi | uredi izvor]


Lebesgue Icon.svgOvaj članak, koji govori o matematičkoj analizi, je u začetku. Možete pomoći Wikipediji tako što ćete ga proširiti.