Heisenbergov princip neodređenosti

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Preferences-system.svg Ovom članku je potrebna jezička standardizacija, preuređivanje ili reorganizacija.
Pogledajte kako poboljšati članak, kliknite na link uredi i doradite članak vodeći računa o standardima Wikipedije.
Kvantna fizika
Schrödinger cat.png
Kvantna mehanika

Uvod u...
Matematička formulacija...

Fundamentalni koncepti

Dekoherencija · Interferencija
Neodređenost · Isključenje
Teorija transformacije
Ehrenfestov teorem · Mjerenje

Eksperimenti

Eksperiment s dvostrukom pukotinom
Davisson-Germer eksperiment
Stern–Gerlach eksperiment
EPR paradoks · Popperov eksperiment Schrödingerova mačka

Jednačine

Schrödingerova jednačina
Paulijeva jednačina
Klein-Gordonova jednačina
Diracova jednačina

Napredne teorije

Kvantna teorija polja
Kvantna elektrodinamika
Kvantna hromodinamika
Kvantna gravitacija
Feynmanov dijagram

Interpretacije

Kopenhagen · Kvantna logika
Skrivene varijable · Transakcijska
Mnogo-svjetova · Ansambl
Konzistentne povijestihistorije · Relacijska
Svijest uzrokuje kolaps
Orkestrirana objektivna redukcija

Naučnici

Planck · Schrödinger
Heisenberg · Bohr · Pauli
Dirac · Bohm · Born
de Broglie · von Neumann
Einstein · Feynman
Everett · Ostali

Klikni na sliku, za pregled animacije: Gaussova talasna funkcija \psi, inicijalno veoma lokalizovane slobodne čestice.

U kvantnoj mehanici, Heisenbergovo načelo neodređenosti govori kako je načelno nemoguće istovremeno odrediti tačan položaj i brzinu neke čestice.[1] Da bismo posmatranjem odredili položaj nekog tijela, moramo ga osvijetliti i primiti svjetlost koja se od njega reflektira. Međutim, zbog difrakcije svjetlosti položaj tijela možemo odrediti najpreciznije na talasnu dužinu svjetlosti pa tako možemo pisati da je neodređenost položaja tijela jednaka talasnoj dužini svjetlosti (Δx≈λ). Smanjenjem talasne dužine korištene svjetlosti možemo sve preciznije odrediti položaj tražene čestice, ali u tom slučaju povećavamo energiju zračenja (E=hf=hc/λ), odnosno čestične osobine svjetlosti (elektromagnetskog talasa) čiji foton u tom slučaju ima veću količinu kretanja (p=h/λ) pa tako u "sudaru" s posmatranom česticom više mijenja njenu količinu kretanja (u odnosu na početnu) tako da je i nju nemoguće sasvim tačno odrediti. Povećanjem čestičnih osobina svjetlosti kojom osvjetljavamo (smanjenje talasne dužine) gubi se na preciznosti mjerenja brzine (količine kretanja), a povećanjem talasne dužine gubi se na preciznosti određivanja položaja. Ovo nije posljedica nesavršenosti mjernih instrumenata, nego je kvantno svojstvo samog posmatranog sistema i nemoguće ga je izbjeći i upotrebom usavršenih mjernih instrumenata. Što preciznije mjerimo položaj, manje precizno mjerimo brzinu i obrnuto.[1] Ovo svojstvo otkrio je 1927. godine njemački fizičar Werner Heisenberg a obično se formulira ovako:

Δp·Δx≥ħ/2

gdje je Δp neodređenost količine kretanja, Δx neodređenost položaja, a ħ je reducirana Planckova konstanta (ħ=h/2π) h=6,626·10-34 Js

ili drukčije formulirano:

ΔE·Δt≥ħ/2

gdje je ΔE neodređenost energije, a Δt neodređenost mjerenja vremenskog intervala.

Ove relacije vrijede i u makrosvijetu (svijetu klasične mehanike), ali tamo su neprimjetljive jer je neodređenost položaja zanemariva u odnosu na dimenzije tijela, a neodređenost količine kretanja u odnosu na ukupnu količinu kretanja tijela.

Heisenbergovo načelo neodređenosti izazvalo je brojne kritike u svijetu fizike 20. vijeka (najpoznatije od Alberta Einsteina) jer je utjelovljenje kontrarnosti(?) determinističkim principima dotadašnje fizike, otpočelo je eru probabilističkog pristupa kvantnoj fizici i postavilo bitnu granicu preciznosti eksperimenta.

Također pogledajte[uredi | uredi izvor]

Reference[uredi | uredi izvor]

  1. ^ a b Milton Orchin, Roger S. Macomber, Allan R. Pinhas, R. Marshall Wilson (2005): The vocabulary and concepts of organic chemistry, 2. izd., John Wiley & Sons, Inc, str. 3, ISBN 978-0-471-68028-4

Vanjski linkovi[uredi | uredi izvor]