Uvjetna konvergencija

S Wikipedije, slobodne enciklopedije
(Preusmjereno sa Uslovna konvergencija)
Jump to navigation Jump to search
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web-stranice ili drugi izvori).
Ako se pravilno ne potkrijepe pouzdanim izvorima, sporne rečenice i navodi mogli bi biti obrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.

U matematici, red ili integral konvergira uslovno ako on konvergira, ali ne konvergira apsolutno.

Definicija[uredi | uredi izvor]

Preciznije, red konvergira uslovno ako postoji i ako je konačan broj (ne ∞ ili −∞), i ako je

Klasičan primjer ovakvog reda je

koji konvergira u ln 2 , ali nije apsolutno konvergentan (pogledajte članak harmonijski red).

Najjednostavniji primjeri uslovno konvergentnih redova (uključujući i gornji primjer) su alternativni redovi.

Bernhard Riemann je dokazao da se uslovno konvergentni redovi mogu, preraspodjelom članova, dovesti u oblik u kojem konvergiraju u bilo koju sumu, uključujući ∞ ili −∞; pogledajte članak Riemannov teorem o redu.

Također pogledajte[uredi | uredi izvor]

Reference[uredi | uredi izvor]

  • Walter Rudin, Principles of Mathematical Analysis (McGraw-Hill: New York, 1964).