Integral

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web-stranice ili drugi izvori).
Ako se pravilno ne potkrijepe validnim izvorima, sporne rečenice i navodi mogli bi biti obrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.
Za druga značenja pojma Integral pogledajte Integral (čvor).
Integral od f(x) od a do b je površina iznad x-ose i ispod krive y = f(x), minus površina ispod x-ose i iznad krivulje, za x u intervalu [a,b].

Integral je ključni koncept više matematike, unutar područja infinitezimalnog računa i matematičke analize. Za datu funkciju f(x) realne varijable x i interval [a,b] na pravcu realnih brojeva, integral

\int_a^b f(x)dx

predstavlja površinu područja u xy-ravni ograničenu grafikom od f, x-ose, i vertikalnim linijama x=a i x=b.

Ideju integrisanja su oblikovali u kasnom 17. vijeku Isaac Newton i Gottfried Wilhelm Leibniz. Zajedno s konceptom derivacije, integral je postao osnovni alat infinitezimalnog računa, s brojnim primjenama u nauci i inženjerstvu.

Jednu od prvih rigoroznih matematičkih definicija integrala dao je Bernhard Riemann. Zasnovana je na postupku određivanja granične vrijednosti (limesa), koji aproksimira površinu kurvilinearnog područja razbijanjem u vertikalne odsječke. Počevši od 19. vijeka, pojavljuju se složenije oznake integrisanja, pri čemu se poopćuje tip funkcije i domena integracije. Krivolinijski integral je definisan za funkcije dvije ili tri varijable, i interval integracije [a,b] je zamijenjen određenim krivima koje spajaju dvije točke ravni ili prostora. U površinskom integralu, kriva je zamijenjena dijelom površi trodimenzionalnog prostora. Integrali diferencijalnih formi igraju fundamentalnu ulogu u savremenoj diferencijalnoj geometriji. Ova su poopćenja integrala prvotno iznikla iz potreba fizike, i igraju značajnu ulogu u oblikovanju fizikalnih zakona, posebno u elektrodinamici. Apstraktnu matematičku teoriju poznatu kao Lebesque integracija je razvio Henri Lebesgue.

Naziv "integral" se također može odnositi sinonimno na značenje onoga od antiderivacije, funkcije F čija je derivacija data funkcija f. U ovom se slučaju zove neodređenim integralom, dok su integrali o kojima se raspravlja u ovom članku nazvani određenima. Osnovna teorema integralnog računa tvrdi da se antiderivacija može rabiti za računanje integrala nad intervalom. Neki autori, na primijer Tom Apostol, razlikuju antiderivaciju i neodređeni integral.

Također pogledajte[uredi | uredi izvor]

Vanjski linkovi[uredi | uredi izvor]

Bih-usa.svg Ovaj članak nije preveden ili je djelomično preveden.
Ako smatrate da ste ga sposobni prevesti, kliknite na opciju "Uredi" i prevedite ga vodeći računa o enciklopedijskom stilu pisanja i pravopisu bosanskog jezika.

Online knjige[uredi | uredi izvor]



E-to-the-i-pi.svg Nedovršeni članak Integral koji govori o matematici treba dopuniti. Dopunite ga prema pravilima Wikipedije.

Commons logo
U Wikimedijinom spremniku se nalazi još materijala vezanih uz: