1/4 + 1/16 + 1/64 + 1/256 + · · ·

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Arhimedova slika sa a = 3/4

U matematici, beskonačni red 1/4 + 1/16 + 1/64 + 1/256 + · · · je primjer jednog od prvih beskonačnih redova koji je ikada sumiran u historiji matematike; koristio ga je Arhimed oko 250.–200. p. n. e.[1] Njegova suma iznosi 1/3. Općenitije, za bilo koje a, beskonačan geometrijski red, čiji je prvi član a i čiji je omjer 1/4, je konvergentan sa sumom

a+\frac{a}{4}+\frac{a}{4^2}+\frac{a}{4^3}+\cdots = \frac43 a.

Vizuelno prikazivanje[uredi | uredi izvor]

3s = 1.

Red 1/4 + 1/16 + 1/64 + 1/256 + · · · ima prilično jednostavan vizuelni prikaz zato i kvadrat i trougao dijele površinu na četiri slična dijela, od kojih svaki predstavlja 1/4 površine originala.

Na slici desno,[2][3] ako se pretpostavi da veliki kvadrat ima površinu 1, tada najveći crni kvadrat ima površinu (1/2)*(1/2) = 1/4. Slično tome, drugi najveći crni kvadrat ima površinu 1/16, a treći 1/64. Površina koju zauzimaju svi crni kvadrati tada iznosi 1/4 + 1/16 + 1/64 + · · ·, a isto toliko iznosi i površina koju zauzimaju sivi i bijeli kvarati. Pošto ove tri površine prekrivaju jediničnu površinu, slika nam pokazuje da

3\left(\frac14+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+\cdots\right) = 1.

Arhimedova vlastita ilustracija, prikazana na vrhu,[4] bila je malo različita i bila je bliža jednačini

3s = 1 again
\frac34+\frac{3}{4^2}+\frac{3}{4^3}+\frac{3}{4^4}+\cdots = 1.

Pogledajte dole za Arhimedovu interpretaciju.

Ista geometrijska strategija funkcioniše na trouglovima, kao što je prikazano na slici desno:[2][5][6] ako veliki trugao ima površinu 1, tada najveći crni trougao ima površinu 1/4, i tako dalje. Figura u cjelini posjeduje samosličnost između velikog trougla i njegovih pod-trouglova (manji trouglovi).

Arhimed[uredi | uredi izvor]

Arhimed se sreo sa redovima u svoj radu Kvadratura parabole. On je računao površinu unutar parabole metodom iscrpljenja, te je, kao rezultat, dobio niz trouglova;u svakom narednom koraku u konstrukciji dodaje površinu od 1/4 od površine prethodnog koraka. Tražio je rezultat u kojem je ukupna površina 4/3 površine prvog koraka. Kako bi to dobio, Arhimed je uveo slijedeću tvrdnju (teoremu):

Tvrdnja 23. Za dati red površina A, B, C, D, … , Z, od kojih je A najveća, a svaka naredna je veća četiri puta od slijedeće u redu, tada je [7]

A + B + C + D + \cdots + Z + \frac13 Z = \frac43 A.

Arhimed je dokazuje ovu tvrdnju najprije sa proračunim

\begin{array}{rcl}
\displaystyle B+C+\cdots+Z+\frac{B}{3}+\frac{C}{3}+\cdots+\frac{Z}{3} & = &\displaystyle \frac{4B}{3}+\frac{4C}{3}+\cdots+\frac{4Z}{3} \\[1em]
  & = &\displaystyle \frac13(A+B+\cdots+Y).
\end{array}

Sa druge strane,

\frac{B}{3}+\frac{C}{3}+\cdots+\frac{Y}{3} = \frac13(B+C+\cdots+Y).

Oduzimanjem ove jednačine od prethodne dobijamo

B+C+\cdots+Z+\frac{Z}{3} = \frac13 A,

te dodajući A na obje strane, dobijamo željeni rezultat.[8]

Danas, standardniji iskaz Arhimedove tvrdnje je da su parcijalne sume reda 1 + 1/4 + 1/16 + · · ·:

1+\frac{1}{4}+\frac{1}{4^2}+\cdots+\frac{1}{4^n}=\frac{1-\left(\frac14\right)^{n+1}}{1-\frac14}.

Ovaj oblik može se dokazati množenjem obje strane sa 1 − 1/4, gdje bi se većina članova na lijevoj strani pokratilo u parovima. Ovaj način funkcioniše kod većine konačnih geometrijskih redova.

Limes[uredi | uredi izvor]

Archimedesova tvrdnja 24 primjenljuje konačnu (ali neodređenu) sumu u tvrdnji 23 na površinu unutar parabole preko dvostrukog reductio ad absurdum. On u stvari[9] ne uzima limes gore navedenih parcijalnih suma, ali u modernom kalulusu ovaj korak je prilično lagan:

\lim_{n\to\infty} \frac{1-\left(\frac14\right)^{n+1}}{1-\frac14} = \frac{1}{1-\frac14} = \frac43.

Pošto je suma beskonačnog reda definisana sa limesom njegovih parcijalnih suma,

1+\frac14+\frac{1}{4^2}+\frac{1}{4^3}+\cdots = \frac43.

Zabilješke[uredi | uredi izvor]

  1. ^ Shawyer and Watson p. 3.
  2. ^ a b Nelsen and Alsina p. 74.
  3. ^ Ajose and Nelson.
  4. ^ Heath p.250
  5. ^ Stein p. 46.
  6. ^ Mabry.
  7. ^ This is a quotation from Heath's English translation (p.249).
  8. ^ This presentation is a shortened version of Heath p.250.
  9. ^ Modern authors differ on how appropriate it is to say that Archimedes summed the infinite series. For example, Shawyer and Watson (p.3) simply say he did; Swain and Dence say that "Archimedes applied an indirect limiting process"; and Stein (p.45) stops short with the finite sums.

Reference[uredi | uredi izvor]