Vektorski prostor

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web-stranice ili drugi izvori).
Ako se pravilno ne potkrijepe validnim izvorima, sporne rečenice i navodi mogli bi biti obrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.

Vektorski ili linearni prostor je algebarski pojam u matematici koji nalazi primjenu u svim glavnim granama matematike, među kojima su linearna algebra, analiza i analitička geometrija. Definiše se na sljedeći način:

Neka skup V ima strukturu Abelove grupe u odnosu na sabiranje. Elemente skupa V zovemo vektori. Neutralni element označujemo sa 0 i zovemo nulti vektor.

Neka skup F ima strukturu polja. Elemente skupa F zovemo skalari, a neutralne elemente u odnosu na dvije binarne operacije označujemo sa 0 i 1.

Na skupu F × V definirano je množenje vektora skalarom, tj. preslikavanje F × V → V, koje svakom skalaru i svakom vektoru pridružuje vektor , tako da vrijede sljedeći aksiomi:

(I)
(II)
(III)
(IV)

Ovako se definisano preslikavanje zove množenje vektora skalarom, dok se V naziva vektorski prostor nad poljem F i piše V(F).

Uobičajeno je da se vektorski prostori nad poljem realnih odnosno kompleksnih brojeva nazivaju realni, odnosno kompleksni vektorski prostori. Također, vektorski se prostor u kojem je definisan skalarni produkt naziva Euklidski vektorski prostor.

Također pogledajte[uredi | uredi izvor]