Idi na sadržaj

Mliječna kiselina

S Wikipedije, slobodne enciklopedije
Mliječna kiselina
=
Općenito
Hemijski spojMliječna kiselina
Druga imenaL-mliječna kiselina IUPAC-ime: 2-hidroksipropanska kiselina a
Molekularna formulaC3H6O3
CAS registarski broj
10326-41-7&rn=1 79-33-4
10326-41-7
SMILESCC(O)C(=O)O
InChI1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/t2-/m0/s1
Osobine1
Molarna masa90,07948
Tačka topljenjaL: 53 °C
D: 53 °C
D/L: 16,8 °C
Tačka ključanja122
Rizičnost
NFPA 704
0
0
0
 
1 Gdje god je moguće korištene su SI jedinice. Ako nije drugačije naznačeno, dati podaci vrijede pri standardnim uslovima.

Mliječna kiselina - IUPAC ime 2-hidroksi propanska kiselina - je hemijski spoj čija je strukturna formula CH3-CH(OH)-COOH). Nastaje u nekoliko biohemijskih procesa. Prvi put ju je izolirao švedski hemičar Carl Wilhelm Scheele 1780. Po strukturi je karboksilna kiselina, koja, osim karboksilne grupe (-COOH), također sadrži i hidroksilnu grupu (-OH), na susjednom atomu ugljika karboksilne grupe. Zbog toga se mliječna kiselina svrstava i u grupu alfa hidroksilnih kiselina (AHA).[1] U rastvorima, mliječna kiselina može izgubiti proton karboksilne grupe, pri čemu ostaje laktatni ion CH3CH(OH)COO.

Rastvara se u vodi ili alkoholima pa se svrstava i u higroskopne supstance. Molekula mliječne kiseline je hiralna i može imati dva optička izomera (L i D oblik), pri čemu je biološki značajan oblik L.

Dobijanje

[uredi | uredi izvor]

U organizmu životinja, L laktat se dobija od piruvata, uz katalizu enzima dehidrogenaze laktata, a u procesu fermetacije tokom normalnog metabolizma ili treninga. Taj proces se osobito ispoljava tokom fizičkih napora ili vježbanja, tj. u nedostatku kisika, kada dolazi do povećanja koncentracije laktata.

U industriji mliječna kiselina se može dobiti fermentacijom šećera, u prisustvu raznih sojeva bakterije Lactobacillus lactis.

Plus (+) oblik mliječne kiseline nastaje pri kontrakciji mišića i većim fizičkim naporima, a minus (-) se dobija vrenjem u prisustvu određenih bakterija.

Moždani metabolizam

[uredi | uredi izvor]

Iako se općenito pretpostvlja da je glukoza glavni izvor energije u živom tkivu, postoje indicije da je to laktat, a ne glukoza, koji se prvenstveno metabolizira u neuronima mozgu više sisarskih vrsta. Među njima su i miševi, pacovi, i ljudi.[2][3] Prema hipotezi laktatnog transportera („šatla“, ćelije glije su odgovorne za pretvaranje glukoze u laktat, a za snabdijevanje neurona laktatom.[4][5] Zbog ove lokalne metaboličke aktivnost glijinih ćelija, venćelijska tečnost bliso okolnih neurona snažno se razlikuje u sastavu od krvi ili verebro-spinalne tečnosti, po mnogo većoj koncentraciji laktata, kao što je pronađeno u studijama mikrodijalize.[2]

Neki dokazi ukazuju da je laktat važan u ranoj fazi razvoja metabolizma mozga u prenatalnoj i početkom potnatalnoj životnoj dobi, kada laktat u ovim fazama ima veće koncentracije u tjelesnim tečnostima, a koje koristi mozak, prvenstveno preko glukoze.[2] Također se pretpostavlja da laktat može biti veoma aktivan preko GABA mreže u razvoju mozga, čineći ih više inhibitornim nego što se ranije pretpostavljalo[6] acting either through better support of metabolites,[2] ili alternativno na osnovu razine unutarćelijske pH vrijednosti,[7][8] or both.[9] Istraživanja možhanih preparata miševa, pokazuju da beta-hidroksibutirat, laktat i piruvat djeluju kao oksidacijske energetske podloge, uzrokujući porast u NAD(P)H fazi oksidacije, jer glukoza nije bila dovoljna kao energent tokom intenzivne sinapsne aktivnosti i, konačno , da laktat može biti efikasan energetski supstrat , koji je sposoban za održavanje i poboljšanje aerobnog energetskog metabolizma mozga in vitro.[10] Studija daje nove podatke o dvofaznoj NAD (P) H fluorescenciji tranzijenata, što je važan fiziološki odgovor neuronske aktivacije koji je reproducirana u mnogim studijama i za koju se vjeruje da potiče uglavnom od aktivnosti izazvane promjene koncentraciju u ćelijskom NADH bazenu.[11]

Testiranje krvi

[uredi | uredi izvor]
Referentni rangovi testova krvi, poredeći sadržaj laktata (ljubičast, u centru) u odnosu na ostale sastojke ljudske krvi

Test krvi za laktat se izvode kako bi se utvrdio status kiselinske homeostaze u organizmu. Uzimanje uzoraka krvi za ovu svrhu, često je iz arterija (čak i ako je teže nego venepunkcija), jer laktata se razlikuje značajno između arterijske i venske krvi, a razina arterijskog je bolji predstavnik za tu svrhu.

Referentne vrijednosti
Izvor uzorka Donja granica Gornja granica Jedinica
Vena4,5[12]19,8[12]mg/dL
0,5[13]2,2[13]mmol/L
Arterija4,5[12]14,4[12]mg/dL
0,5[13]1,6[13]mmol/L

Tokom porođaja, razina laktat u fetusu može biti kvantificiraa testiranjam fetusnog vlasišta u krvi.

Prekursor polimerar

[uredi | uredi izvor]

Dvije molekule mliječne kiseline mogu biti dehidrirane u lakton i laktid. U prisustvu katalizatora, laktid, ataktno ili sindiotaktno polimerizira polilaktide (PLA), koji su biorazgradivi poliesteri. PLA je primjer plastike koja se potiče iz petrohemije.

Primjena u farmaciji i kozmetici

[uredi | uredi izvor]

Mliječna kiselina je također koristi u farmaceutskoj tehnologiji za proizvodnju laktata koji su rastvorljivi u vodi iz inače nerastvorljivih aktivnih sastojaka. Ima i daljnje korištenje u topikalnoj pripremi i kozmetici za podešavanje kiselosti i za dezinfekciju i keratolitske potrebe.

Mliječna kiselina se nalazi prvenstveno u proizvodnji varijanti kiselog mlijeka, kao što su kumis, laban, jogurt, kefir, neki sirevi, i kambuča. Kazein je u fermentiranom mlijeku koagulira pomoću mliječne kiseline. Mliječna kiselina je također odgovorna za kiseli ukus hljeba surduk.

U nekim bazama podataka o hrani (u SAD i drugim) mliječna kiseline je uključena pod pojmom "ugljeni hidrati" (ili "ugljenih hidrata od razlika"), jer to uključuje sve osim vode, proteina, masti, pepela i etanola. To znači da se vrijednost od 4 kalorije po gramu, mliječne kiseline može koristiti u izračunavanju energetske vrijednosti hrane.[14]

U proizvodnji piva nekih stilova (kiselo pivo) namjerno se dodaje mliječna kiselina. Najčešće je prirodno proizvedena djelovanjem raznih sojeva bakterija. Ove bakterije fermentiraju šećere u kiseline, za razliku od kvasca, koji fermentira šećer u etanol. Jedan takva varijanta je belgijski Lambic e. Nakon hlađenja sladovine, kvasci i bakterije se „obaraju“ (talože) u otvorenim fermentorima. Većina pivara proizvodi više zajedničkih stilova piva koji će osigurati takve bakterije koje mogu pokrenuti fermentaciju. Ostali kiseli tipovi piva uključuju: Berliner Weisse, Flandria red i američki divlji ale[15][16]

U proizvodnji vina , prirodno ili pod kontrolom, često se koristi bakterijski proces za pretvaranje prirodno prisutne jabučne kiseline do mliječne kiseline, da se smanji oštrina i iz zbog drugih razloga u vezi sa okusom. Ova mliječna fermentacija se postiže djelovanjem bakterija mliječnokiselinskog vrenja roda Lactobactis.

Kao prehrambeni additiv dozvoljena je za upotrebu u EU,[17] SAD[18]. Australiji i Novom Zelandu;[19] U spiskovima po INS je navedena pod brojem 270 ili kao E broj E270. Mliječna kiselina se koristi kao konzervans hrane, ljekoviti i aromatski agens.[20] Sastojak je u procesuiranju hrane i sredstava za dekontaminaciju tokom prerade mesa.[21]

Mliječna kiselina se komercijalno proizvodi fermentacijom ugljikohidrata, kao što glukoza, saharoza ilu laktoza ili hemijskom sintezom.[20] Izvori ugljikohidatata su kukuruz šećerna repa i šećerna trska.[22]

Izvori

[uredi | uredi izvor]

Glani izvori mliječne kiseline su mliječnim proizvodi kao što je jogurt, kefir i neke vrste sireva i hljebova. Također se može naći u nekim vrstama vina.[23][24][25]

Također pogledajte

[uredi | uredi izvor]

Reference

[uredi | uredi izvor]
  1. Voet D., Voet J. G. Biochemistry, 3rd Ed.[publisher= Wiley. ISBN 978-0-471-19350-0.
  2. 1 2 3 4 Zilberter, Y.; Zilberter, T.; Bregestovski, P. (2010). "Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis". Trends in Pharmacological Science. 31 (9): 394–401. doi:10.1016/j.tips.2010.06.005. PMID 20633934.
  3. Wyss, M. T.; Jolivet, R.; Buck, A.; Magistretti, P. J.; Weber, B. (maj 2011). "In vivo evidence for lactate as a neuronal energy source". Journal of Neuroscience. 31 (20): 7477–7485. doi:10.1523/JNEUROSCI.0415-11.2011. PMID 21593331.
  4. Gladden, L. B. (juli 2004). "Lactate metabolism: a new paradigm for the third millennium". Journal of Physiology (London). 558 (1): 5–30. doi:10.1113/jphysiol.2003.058701. PMC 1664920. PMID 15131240.
  5. Pellerin, L.; Bouzier-Sore, A. K.; Aubert, A.; Serres, S.; Merle, M.; Costalat, R.; Magistretti, P. J. (2007). "Activity-dependent regulation of energy metabolism by astrocytes: an update". Glia. 55 (12): 1251–62. doi:10.1002/glia.20528. PMID 17659524.
  6. Holmgren, C. D.; Mukhtarov, M.; Malkov, A. E.; Popova, I. Y.; Bregestovski, P.; Zilberter, Y. (februar 2010). "Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro". Journal of Neurochemistry. 112 (4): 900–12. doi:10.1111/j.1471-4159.2009.06506.x. PMID 19943846.
  7. Tyzio, R.; Allene, C.; Nardou, R.; Picardo, M. A.; Yamamoto, S.; Sivakumaran, S.; Caiati, M. D.; Rheims, S.; Minlebaev, M. (januar 2011). "Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate". Journal of Neuroscience. 31 (1): 34–45. doi:10.1523/JNEUROSCI.3314-10.2011. PMID 21209187.
  8. Ruusuvuori, E.; Kirilkin, I.; Pandya, N.; Kaila, K. (2010). "Spontaneous network events driven by depolarizing GABA action in neonatal hippocampal slices are not attributable to deficient mitochondrial energy metabolism". Journal of Neuroscience. 30 (46): 15638–42. doi:10.1523/JNEUROSCI.3355-10.2010. PMID 21084619.
  9. Khakhalin, A. S. (maj 2011). "Questioning the depolarizing effects of GABA during early brain development". Journal of Neurophysiology. 106 (3): 1065–7. doi:10.1152/jn.00293.2011. PMID 21593390.
  10. Zilberter, Y.; Bregestovski, P.; Mukhtarov, M.; Ivanov, A. (2011). "Lactate Effectively Covers Energy Demands during Neuronal Network Activity in Neonatal Hippocampal Slices". Frontiers in Neuroenergetics. 3: 2. doi:10.3389/fnene.2011.00002. PMC 3092068. PMID 21602909.
  11. Kasischke, K. (2011). "Lactate Fuels the Neonatal Brain". Frontiers in Neuroenergetics. 3. doi:10.3389/fnene.2011.00004.
  12. 1 2 3 4 Blood Test Results - Normal Ranges Arhivirano 2. 11. 2012. na Wayback Machine Bloodbook.Com
  13. 1 2 3 4 Izvedeno iz masovnih vrijednosti, upotrebom vrijednosti molske mase od 90,08 g/mol
  14. "USDA National Nutrient Database for Standard Reference, Release 28 (2015) Documentation and User Guide" (PDF). 2015. str. 13.
  15. "Brewing With Lactic Acid Bacteria". MoreBeer.
  16. Lambic (Classic Beer Style) – Jean Guinard
  17. "Current EU approved additives and their E Numbers". UK Food Standards Agency. Pristupljeno 27. 10. 2011.
  18. "Listing of Food Additives Status Part II". US Food and Drug Administration. Pristupljeno 27. 10. 2011.
  19. "Standard 1.2.4 - Labelling of ingredients". Australia New Zealand Food Standards Code. Pristupljeno 27. 10. 2011.
  20. 1 2 "Listing of Specific Substances Affirmed as GRAS:Lactic Acid". US FDA. Pristupljeno 20. 5. 2013.
  21. "Purac Carcass Applications". Purac. Arhivirano s originala, 29. 7. 2013. Pristupljeno 20. 5. 2013.
  22. "Agency Response Letter GRAS Notice No. GRN 000240". FDA. US FDA. Arhivirano s originala, 25. 8. 2013. Pristupljeno 20. 5. 2013.
  23. Bajrović K, Jevrić-Čaušević A., Hadžiselimović R., Eds. (2005). Uvod u genetičko inženjerstvo i biotehnologiju. Institut za genetičko inženjerstvo i biotehnologiju (INGEB) Sarajevo. ISBN 9958-9344-1-8.CS1 održavanje: više imena: authors list (link)
  24. Kapur Pojskić L. (2014). Uvod u genetičko inženjerstvo i biotehnologiju, 2. izdanje. Institut za genetičko inženjerstvo i biotehnologiju (INGEB), Sarajevo. ISBN 978-9958-9344-8-3.
  25. Međedović S., Maslić E., Hadžiselimović R. (2002). Biologija 2. Svjetlost, Sarajevo. ISBN 9958-10-222-6.CS1 održavanje: više imena: authors list (link)

Vanjski linkovi

[uredi | uredi izvor]