Idi na sadržaj

Vjerovatnoća

S Wikipedije, slobodne enciklopedije

Vjerovatnoća je jedna od nekoliko riječi koje označavaju nesigurne događaje, koja se u zavisnosti od konteksta može nazivati i izgledi, mogućnost, šansa, nesigurno, sumnjivo, itd. Teorija vjerovatnoće pokušava da kvantifikuje vjerovatan događaj. Teorija vjerovatnoće se dosta koristi u oblastima, kao što su finansije, statistika, kockanje, matematika, nauka i filozofija kako bi se izveli zaključci o vjerovatnosti potencijalnih događaja.

Historija

[uredi | uredi izvor]

Naučna studija o vjerovatnoći datira iz modernijeg doba. Kockanje pokazuje interesovanje za vjerovatnoću od davnina, ali sama matematička teorija počela je da vjerovatnoću definiše i opisuje mnogo kasnije.

Nauka o vjerovatnoći datira od prepiske Pierre de Fermata i Blaise Pascala (1654). Christiaan Huygens (1657) se prvi posvetio vjerovatnoći dajući svom istraživanju naučni karakter. Jakob Bernoullijevo djelo Ars Conjectandi (objavljena posthumno, 1713. godine) i Abraham de Moivre Doktrina slučajnosti (1718. godina) je tretirala vjerovatnoću kao granu matematike.

Koncepti

[uredi | uredi izvor]

Opšta teorija vjerovatnoće je najčešće podjeljena u dva povezana koncepta:

Matematički tretman

[uredi | uredi izvor]

Formalizacija vjerovatnoće

[uredi | uredi izvor]

Kao i druge teorije, teorija vjerovatnoće je opis koncepta u formalnim terminima, odnosno terminima koji se posmatraju odvojeno od njihovog značenja. Ovim formalnim terminima upravljaju pravila matematike i logike i rezultati se tumače i prenose i u tom objašnjenom obliku vraćaju u oblast okvirne teorije.

Postoje najmanje dva uspješna pokušaja da se formalizuje vjerovatnoća, koji su nazvani Kolmogorova formulacija i Coxova formulacija. U oba slučaja zakoni vjerovatnoće su isti, sa malom razlikom u tehničkim detaljima:

  • . Vjerovatnoća je broj između 0 i 1;
  • . Zbir vjerovatnoćâ da će se posmatrani događaj dogoditi, i da se on neće dogoditi iznosi 1;
  • . Vjerovatnoća da će se neka dva događaja dogoditi je jednaka proizvodu vjerovatnoće jednog od njih i vjerovatnoće drugog pri uslovu da se prvi već dogodio;
  • . Vjerovatnoća nemogučeg događaja;
  • . U jednom potpunom sistemu događaja je njihov proizvod vjerovatnoće jednak 1.
Pregled vjerovatnoća
Događaj Vjerovatnoća
A
A suprotno
A ili B
A i B
A uslovno B

Predstavljanje i interpretacija vrijednosti u vjerovatnoći

[uredi | uredi izvor]

Vjerovatnoća događaja se predstavlja kao realan broj između 0 i 1. Nemoguć događaj ima vjerovatnoću 0, a siguran događaj ima vjerovatnoću 1. U slučaju da je jednaka vjerovatnoća da će se događaji dogoditi, kao i da neće, vjerovatnoća je 0,5.

Raspodjele vjerovatnoće

[uredi | uredi izvor]

Raspodjela vjerovatnoće je funkcija koja dodjeljuje vjerovatnoće elementima nekog skupa. Raspodjela je diskretna ako je taj skup prebrojiv (najčešće podskup skupa prirodnih brojeva), a neprekidna ako je funkcija raspodjele definisana na nekom konačnom ili beskonačnom intervalu skupa realnih brojeva i neprekidna na njemu. Skoro sve raspodjele od praktične važnosti su ili diskretne ili neprekidne.

Također pogledajte

[uredi | uredi izvor]

Vanjski linkovi

[uredi | uredi izvor]