Granična vrijednost funkcije

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web stranice ili drugi izvori).
Sporne rečenice i navodi bi mogli, ukoliko se pravilno ne označe validnim izvorima, biti obrisani i uklonjeni. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci, te nakon toga možete ukloniti ovaj šablon.
Bih-usa.svg Ovaj članak nije preveden ili je djelimično preveden.
Ako smatrate da ste sposobni da ga prevedete, kliknite na link uredi i prevedite ga vodeći računa o enciklopedijskom stilu pisanja i pravopisu bosanskog jezika.
Teme u kalkulusu

Fundamentalni teorem
Limesi funkcija
Kontinuitet
Teorem srednje vrijednosti

Za druga značenja pojma Granična vrijednost pogledajte Granična vrijednost (čvor).

U matematici, granična vrijednost funkcije je fundamentalni koncept u kalkulusu. Funckija f(x) ima graničnu vrijednost l u tački p ako je vrijednost f(x) približno jednaka l (kada je x približno p). Prve definicije, koje su se pojavite u ranom 19. vijeku, su napisane u tekstu ispod.

Historija[uredi | uredi izvor]

[icon] Ova sekcija zahtijeva proširenje.

Motivacija[uredi | uredi izvor]

[icon] Ova sekcija zahtijeva proširenje.

Definicije[uredi | uredi izvor]

Funkcije na skupu realnih brojeva[uredi | uredi izvor]

Pretpostavimo da je f : RR funkcija definisana u skupu realnih brojeva i da p,lR; tada kažemo: limes funkcije f ako x teži p je l, a to se piše:

 \lim_{x \to p}f(x) = l

ako i samo ako za svako realno ε > 0 postoji realno δ > 0 takvo da je | f(x) - l | < ε kada 0 < | x - p | < δ. Nije nužno da f(p) bude definisana.

x može težiti p odozgo (desno) ili odozdo (lijevo), kada se limes piše kao:

 \lim_{x \to p^+}f(x) = l

ili

 \lim_{x \to p^-}f(x) = l

respektivno. Ako su ova dva limesa jednaka sa l, tada pišemo limes od f(x) za p. Ako limesi nije jednaki sa l, tada limesi, kao takvi, ne postoje.

Funkcije u metričkom prostoru[uredi | uredi izvor]

Pretpostavimo je f : (M,dM) → (N,dN) definisana između dva metrička prostora, sa x ∈ M, a p tačka gomilanja od M i lN. Tada kažemo da je granična vrijednost f, kada x teži p, l i pišemo

 \lim_{x \to p}f(x) = l

ako i samo ako za svako ε > 0 postoji δ > 0 takvo da je dN(f(x), l) < ε kada je 0 < dM(x, p) < δ. p ne mora biti u domeni od f, niti l mora biti u rangu od f.

Altervativna definicja, koja koristi koncept susjednosti članova, glasi:

 \lim_{x \to p}f(x) = l

ako i samo ako sa svaki susjedni član V od l u N postoji susjedni član U od p u M, takav da je f(U - {p}) ⊆ V.

Funckcije u topološkom prostoru[uredi | uredi izvor]

Pretpostavimo da su X i Y topološki prostori, gdje je Y Hausdorffov prostor. Neka p bude tačka gomilanja od X, i lY i f : X - {p} → Y funkcija. Tada kažemo da je granična vrijednost f, ako x teži p, 'l i pišemo

 \lim_{x \to p}f(x) = l

ako i samo ako za svaki susjedni član V od l, postoji susjedni član U od p takav da je f(U - {p}) ⊂ V.

Limes funkcija u beskonačnosti[uredi | uredi izvor]

Granična vrijednot funkcije postoji za svako ε > 0 postoji S > 0, takvo da je | f(x) - L | < ε za svako x > S.

If the extended real line R is considered, i.e., R ∪ {-∞, +∞}, then it is possible to define limits of a function at infinity.

Suppose f(x) is a real-valued function such that x may increase or decrease indefinitely, then we say that the limit of f as x approaches infinity is L and we write

 \lim_{x \to \infty}f(x) = L

if and only if for every ε > 0 there exists S > 0 such that | f(x) - L | < ε whenever x > S.

Similarly, we say that the limit of f as x approaches infinity is infinity and we write

 \lim_{x \to \infty}f(x) = \infty

if and only if for every R > 0 there exists S > 0 such that for all real numbers f(x) > R whenever x > S.

In an analogous way, the following expressions can be defined:

 \lim_{x \to -\infty}f(x) = L, \lim_{x \to \infty}f(x) = -\infty, \lim_{x \to -\infty}f(x) = \infty, \lim_{x \to -\infty}f(x) = -\infty.

Računanje granične vrijednosti u beskonačnosti[uredi | uredi izvor]

There are three basic rules for evaluating limits at infinity for a rational function f(x) = p(x)/q(x):

  • If the degree of p is greater than the degree of q, then the limit is positive or negative infinity depending on the signs of the leading coefficients;
  • If the degree of p and q are equal, the limit is the leading coefficient of p divided by the leading coefficient of q;
  • If the degree of p is less than the degree of q, the limit is 0.

If the limit at infinity exists, it represents a horizontal asymptote at x = L. Polynomials do not have horizontal asymptotes; they may occur with rational functions.

Kompleksne funkcije[uredi | uredi izvor]

The complex plane with metric d(x, y) := |x-y| is also a metric space. There are two different types of limits when we consider complex-valued functions.

Granična vrijednost funkcije u tački[uredi | uredi izvor]

Suppose f is a complex-valued function, then we write

 \lim_{x \to p}f(x) = L

if and only if

for every ε > 0 there exists a δ >0 such that for all real numbers x with 0<|x-p|<δ, we have |f(x)-L|<ε

It is just a particular case of functions over metric spaces with both M and N are the complex plane.

Granična vrijednost funkcije sa više promjenjivih[uredi | uredi izvor]

By noting that |x-p| represents a distance, the definition of a limit can be extended to functions of more than one variable. In the case of a function f : R2R,

 \lim_{(x,y) \to (p, q)} f(x, y) = L

if and only if

for every ε > 0 there exists a δ > 0 such that for all (x,y) with 0 < ||(x,y)-(p,q)|| < δ, we have |f(x,y)-L| < ε

where ||(x,y)-(p,q)|| represents the Euclidean distance. This can be extended to any number of variables.

Osobina[uredi | uredi izvor]

To say that the limit of a function f at p is L is equivalent to saying

for every convergent sequence (xn) in M with limit equal to p, the sequence (f(xn)) converges with limit L.

If the sets A, B, ... form a finite partition of the function domain, x\in\overline{A} \land x\in\overline{B}, ... and the relative limit for each of those sets exist and is the equal to, say, L, then the limit exists for the point x and is equal to L.

The function f is continuous at p if and only if the limit of f(x) as x approaches p exists and is finite. Equivalently, f transforms every sequence in M which converges towards p into a sequence in N which converges towards f(p).

Again, if N is a normed vector space, then the limit operation is linear in the following sense: if the limit of f(x) as x approaches p is L and the limit of g(x) as x approaches p is P, then the limit of f(x) + g(x) as x approaches p is L + P. If a is a scalar from the base field, then the limit of af(x) as x approaches p is aL.

Taking the limit of functions is compatible with the algebraic operations, provided the limits on the right sides of the identity below exist:

\begin{matrix}
\lim_{x \to p} & (f(x) + g(x)) & = & \lim_{x \to p} f(x) + \lim_{x \to p} g(x) \\
\lim_{x \to p} & (f(x) - g(x)) & = & \lim_{x \to p} f(x) - \lim_{x \to p} g(x) \\
\lim_{x \to p} & (f(x) g(x)) & = & \lim_{x \to p} f(x) \cdot \lim_{x \to p} g(x) \\
\lim_{x \to p} & (f(x)/g(x)) & = & {\lim_{x \to p} f(x) / \lim_{x \to p} g(x)}
\end{matrix}

(the last provided that the denominator is non-zero). In each case above, when the limits on the right do not exist, or, in the last case, when the limits in both the numerator and the denominator are zero, nonetheless the limit on the left may still exist -- this depends on which functions f and g are.

These rules are also valid for one-sided limits, for the case p = ±∞, and also for infinite limits using the rules

  • q + ∞ = ∞ for q ≠ -∞
  • q × ∞ = ∞ if q > 0
  • q × ∞ = −∞ if q < 0
  • q / ∞ = 0 if q ≠ ± ∞

(see extended real number line).

Note that there is no general rule for the case q / 0; it all depends on the way 0 is approached. Indeterminate forms — for instance, 0/0, 0×∞, ∞−∞, and ∞/∞ — are also not covered by these rules, but the corresponding limits can often be determined with L'Hôpital's rule.

Također pogledajte[uredi | uredi izvor]