Hemija

Sa Wikipedije, slobodne enciklopedije
Idi na: navigacija, traži
Ambox warning blue construction.svg Trenutno se vrše izmjene na članku.
Kao znak dobre volje, suzdržite se od mijenjanja članka dok je prikazano obavještenje kako bi se izbjegla kolizija s trenutnim izmjenama.
Rastvori različitih supstanci, uključujući amonij-hidroksid i dušičnu kiselinu, osvjetljeni svjetlošću u raznim bojama.

Hemija je jedna od prirodnih nauka koja proučava sastav, strukturu, osobine i promjene supstance.[1][2] Hemija se pretežno bavi atomima i molekulama kao i s njihovim interakcijama i pretvaranjima, naprimjer, osobinama hemijskih veza između atoma koje grade hemijske spojeve. Kao takva, hemija proučava interakcije elektrona i različitih oblika energije u fotohemijskim reakcijama, reakcijama oksidacije i redukcije, faznih tranzicija i odvajanja supstanci iz mješavina (smjesa). Dobijanje i osobine složenih supstanci, kao što su legure, polimeri, biomolekule i farmaceutska sredstva smatraju se specijaliziranim oblastima odnosno granama hemije.

Hemija se ponekad naziva i središnja nauka, jer ona premoštava druge prirodne nauke poput fizike, geologije i biologije.[3][4] Hemija je grana fizičkih nauka ali postoji određena razlika od fizike.[5] Etimologija pojma hemija nije u potpunosti razjašnjena, pa je u tom pogledu tema određenih neslaganja. Historija hemije se može pratiti i preko određenih faza u njenom razvoju, poput alhemije, koja se praktikovala hiljadama godina u mnogim dijelovima svijeta.

Etimologija[uredi | uredi izvor]

Pojam hemija potječe od riječi alhemija, ranijeg skupa aktivnosti koji su obuhvatali elemente iz moderne hemije, metalurgije, filozofije, astrologije, astronomije, misticizma i medicine. Ona se obično smatrala kao potraga za načinom pretvaranja olova ili nekog drugog uobičajenog materijala u zlato.[6] Alhemija se počela praktikovati oko 330. godine, uključivala je proučavanje sastava vode, njenog kretanja, rasta, pridruživanja i izlučivanja iz drugih supstanci, izvlačenja duhova iz tijela kao i njihovim spajanjem unutar tijela (Zosim iz Panopolisa).[7] Alhemičari su se u narodnom govoru zvali hemičari, a kasniji sufiks -ija je dodan kako bi se opisala vještina hemičara kao hemija.

Riječ alhemija je izvedena iz arapske riječi al-kimia (الکیمیاء). U korijenu, pojam je posuđen iz grčkog χημία ili χημεία.[8][9] Dalje, ovaj pojam je možda i egipatskog porijekla. Mnogi vjeruju da je al-kimia izvedena iz grčkog χημία, a koja se opet dobila preko riječi chemi ili kimi, što je drevno ime Egipta u egipatskom jeziku.[8] Po drugom mišljenju, al-kimia je možda izvedena iz χημεία, u značenju izliti (spojiti) zajedno.[10]

Definicija[uredi | uredi izvor]

Retrospektivno, definicija hemije se mijenjala kroz historiju, kako su nova otkrića i teorije dodavne nove funkcionalnosti u ovu nauku. Pojam hemija, po mišljenju poznatog hemičara Boyla 1661. koji je smatrao da je ona subjekat materijalnih principa mješanih (složenih) tijela.[11] Dvije godine kasnije, 1663. hemičar Christopher Glaser opisao je hemiju kao naučnu umjetnost, koja izučava rastvorena tijela te iz njih izvlači različite supstance od kojih su ona izgrađena, kao i način kako da ih ponovno spojiti i dovesti ih do savršenosti višeg nivoa.[12]

Definicija riječi hemija iz 1730. koju je koristio Georg Ernst Stahl značila je umjetnost razdvajanja miješanih, agregatnih i spojenih tijela u njihove sastojke; kao i sastavljanje takvih tijela iz tih sastojaka.[13] Jean-Baptiste Dumas je 1837. smatrao pojam hemije kao nauku koja izučava zakone i efekte molekularnih sila.[14] Ova definicija je kasnije evoluirala, pa se 1947. došlo do značenja nauke o supstancama: njihovoj strukturi, osobinama i reakcijama koje ih pretvaraju u druge supstance, a ovu karakterizaciju hemije prihvatio je i Linus Pauling.[15] U novije doba, 1998. profesor Raymond Chang proširio je tu definiciju na proučavanje materije i promjena koje se dešavaju s njom.[16]

Historija[uredi | uredi izvor]

Glavna stranica: Historija hemije
Demokritovu atomističku filozofiju naknadno je usvojio i Epikur (341–270 p.n.e.)

Stare civilizacije, poput Egipćana,[17] Babilonaca i Indijaca[18] stekle su ogromno praktično znanje o vještinama metalurgije, izrade grnčarije i pravljenja boja, ali o tome nisu razvili sistematsku teoriju.

Osnovne hemijske hipoteze prvo su se pojavile u klasičnoj Grčkoj u vidu teorije "četiri elementa" što je konačno uobličio Aristotel navodeći da su vatra, zrak, zemlja i voda četiri temeljna elementa čijim je kombiniranjem izgrađeno sve ostalo. Grčki atomizam potječe iz 440tih p.n.e., nastao u djelima filozofa kao što su Demokrit i Epikur. Rimski filozof Lukrecije je 50 p.n.e. razvio ovu teoriju u svojoj knjizi De rerum natura ("O prirodi stvari").[19][20] Za razliku od modernog koncepta nauke, grčki atomizam je bio čisto filozofske prirode, sa vrlo slabim vezama sa iskustvenim posmatranjima i bez ikakvog osvrta na hemijske eksperimente.[21]

Vještina alhemije je najprije doživjela procvat u helenističkom svijetu, gdje su se miješale magija i okultizam u proučavanje prirodnih supstanci, s krajnjim ciljem pretvaranja elemenata u zlato i otkrivanje napitka vječnog života.[22] Alhemija je otkrivena i praktikovana širom arapskog svijeta nakon pojave islama,[23] a od tamo se prelila u srednjovjekovnu i renesansnu Evropu preko latinskih prevoda.[24]

Hemija kao nauka[uredi | uredi izvor]

Pod utjecajem novih iskustvenih metoda koje su predložili Francis Bacon i drugi, grupa hemičara na Univerzitetu u Oxfordu, Robert Boyle, Robert Hooke i John Mayow počeli su da iznova oblikuju stare alhemijske tradicije u naučnu disciplinu. Naročito se Boyle smatra za osnivača i "oca" hemije zbog svog najvažnije rada, teksta iz oblasti klasične hemije "Skeptični hemičar" (The Sceptical Chymist) gdje su navedene osnovne razlike između postavki alhemije i iskustvenih naučnih otkrića nove hemije.[25] On je, između ostalog, objavio i Boyleov zakon, čime je odbio klasične postavke "četiri elementa" i predložio mehanističke alternative atoma i hemijskih reakcija koje bi mogle biti subjekat strogih eksperimenata.[26]

Antoine-Laurent de Lavoisier se smatra "ocem moderne hemije".[27]

Teoriju flogistona (supstance koja je u osnovi svakog sagorijevanja) predložio je Nijemac Georg Ernst Stahl početkom 18. vijeka a tu teoriju je tek krajem tog vijeka opovrgnuo francuski hemičar Antoine Lavoisier, "hemijski" pandan Newtonu u fizici; koji je učinio više od bilo koga drugog za osnivanje nove nauke na ispravnim teoretskim osnovama, tako što je rasvijetlio princip održanja mase i razvio novi sistem hemijske nomenklature, koji se i danas manje-više koristi.[28]

Međutim, prije ovog njegovog rada, postignuta su mnoga važna otkrića, naročito u vezi prirode zraka, za koji se ispostavilo da je sastavljen iz mnogih različitih gasova. Škotski hemičar Joseph Black (prvi eksperimentalni hemičar) i Holanđanin J. B. van Helmont otkrili su ugljik-dioksid, ili ono što je Black nazivao "fiksni zrak" 1754. godine; Henry Cavendish je otkrio vodik i rasvijetlio mnoge njegove osobine, dok su Joseph Priestley i, nezavisno od njega, Carl Wilhelm Scheele izdvojili čisti kisik.

Engleski naučnik John Dalton postavio je modernu teoriju atoma; po kojoj su sve supstance sastavljene iz nevidljivih atoma materije i da različiti atomi imaju različite atomske težine. Razvoj elektrohemijske teorije hemijskih kombinacija desio se početkom 19. vijeka naročito kao rezultat rada dvojice naučnika Jacob Berzeliusa i Humphryja Davyja, a zasnovanog na ranijim otkrićima elektrostatičkog stuba koji je napravio Alessandro Volta. Davy je otkrio devet novih elemenata uključujući alkalne metale izdvajajući ih iz njihovih oksida pomoću električne struje.[29]

Britanac William Prout prvi je predložio sortiranje svih hemijskih elemenata prema njihovim atomskim težinama, tako što je sve poznate atome izrazio omjerom njihove težine prema atomskoj težini vodika. Newlands je napravio prvobitni sistem elemenata, koji su kasnije razvili u moderni periodni sistem elemenata[30] Nijemac Lothar Meyer i Rus Dmitrij Ivanovič Mendeljejev tokom 1860tih.[31] Inertne gasove, kasnije nazvani plemeniti gasovi, otkrio je William Ramsay u saradnji sa Lordom Rayleighjem krajem 19. vijeka, pa su s tim otkrićem popunjene osnovne strukture tabele periodnog sistema.

Organsku hemiju razvio je Justus von Liebig i njegovi savremenici, nakon što je Friedrich Wöhler sintetizirao ureu kojim je zapravo potvrđeno da se živi organizmi, teoretski, mogu posmatrati i svesti pod hemijske zakone.[32] Druga važna otkrića 19. vijeka bila su, između ostalog, razumijevanje valencije veze (Edward Frankland 1852. godine) i primjena termodinamike u hemiji (J. W. Gibbs i Svante Arrhenius tokom 1870tih).

Hemijska struktura[uredi | uredi izvor]

gore: očekivani rezultati: alfa-čestice prolaze kroz model atoma pudinga od šljiva bez prepreka.
dolje: dobijeni rezultati: manji dio čestica je odbijen, dajući indiciju da postoji malehni, koncentrični naboj (atomsko jezgro).

Tek početkom 20. vijeka konačno su shvaćene teoretske osnove hemije nakon serije značajnih otkrića, koji su rezultat uspjelih pokusa u istraživanju prave prirode unutrašnje strukture atoma. Godine 1897. J. J. Thomson je na Univerzitetu Cambridge otkrio elektron a vrlo brzo njega je francuski naučnik Becquerel kao i bračni par Pierre i Marie Curie istraživali fenomen radioaktivnosti. U seriji pionirskih eksperimenata Ernest Rutherford je na Univerzitetu u Manchesteru otkrio unutrašnju strukturu atoma i postojanje protona, klasificirao je i objasnio različite vrste radioaktivnog zračenja i uspješno transmutirao prvi element bombardujući dušik alfa-česticama.

Njegov rad na atomskoj strukturi razvili su i poboljšali njegovi učenici, danski fizičar Niels Bohr i Englez Henry Moseley. Elektronsku teoriju hemijskih veza i molekulskih orbitala razvili su američki naučnici Linus Pauling i Gilbert N. Lewis.

Godinu 2011. Ujedinjeni narodi su proglasili Međunarodnom godinom hemije.[33] Godina je proglašena na inicijativu IUPAC-a (Međunarodne unije čiste i primijenjene hemije) te UN organizacije za nauku, obrazovanje i kulturu, a uključivao je hemijska društva, akademije i institucije u svijetu a zasnivala se na individualnim inicijativama za organiziranje lokalnih i regionalnih aktivnosti.

Principi moderne hemije[uredi | uredi izvor]

Laboratorija na institutu za biohemiju, Univerzitet u Kölnu.

Danas prihvaćeni model atomske strukture je kvantnomehanički model.[34] Tradicionalna hemija počinje proučavanjem elementarnih čestica, atoma, molekula,[35] hemijskih spojeva, metala, kristala i drugih agregata materije. Ova materija se može proučavati u tri (uobičajena) agregatna stanja: čvrstom, tečnom ili gasovitom stanju, bilo u pojedinačnom ili njihovoj kombinaciji. Međudjelovanja, reakcije i transformacije koje se proučavaju u hemiji obično su rezultat interakcije između atoma, koji dovode do reorganiziranja hemijskih veza koje drže atome povezane jedne s drugima. Takva ponašanja se ispituju u hemijskim laboratorijama. Prema stereotipskim mišljenjima, u hemijskim laboratorijama se koriste razni oblici laboratorijskog posuđa. Međutim, posuđe nije osnovno u hemijskim naukama, a veliki broj eksperimenata u hemiji, kako primijenjenoj tako i u industrijskoj, izvodi se bez njega.

Hemijska reakcija je transformacija nekih supstanci u jednu ili više drugačijih supstanci.[36] Osnova za takve hemijske transformacije je reorganiziranje elektrona u hemijskim vezama između atoma. One se simbolički mogu predstaviti pomoću hemijskih jednačina, koje obično uključuju atome kao subjekte. Broj atoma na lijevoj i na desnoj strani jednačine moraju biti jednaki. Samo u posebnim slučajevima kada broj atoma na suprotnim stranama jednačine nije isti, takva transformacija se naziva nuklearna reakcija ili radioaktivni raspad. Vrste hemijskih reakcija u koje mogu stupati supstance i promjene energije povezane sa njima obuhvaćene su određenim osnovnim pravilima, poznatim kao hemijski zakoni.

Razmatranja o energiji i entropiji su nezamjenjivo važna u gotovo svim oblastima hemije. Hemijske supstance se dijele po njihovoj strukturi, fazama, kao i po hemijskom sastavu. One se mogu analizirati koristeći alate hemijske analize kao što su spektroskopija i hromatografija. Naučnici koji se bave hemijskim istraživanjima nazivaju se hemičarima.[37] Većina modernih hemičara se specijalizira u jednoj ili više podoblasti hemije. Za detaljno izučavanje hemije postoje brojni koncepti od nezamjenjivog značaja, a neki od njih su:[38]

Materija[uredi | uredi izvor]

Glavna stranica: Materija
Dijagram atoma zasnovan na Rutherfordovom modelu

U hemiji, materija je definirana kao sve ono što ima masu u mirovanju i zapreminu (zauzima prostor) i sačinjeno je od čestica. Čestice koje sačinjavaju materiju također imaju vlastitu masu u mirovanju, ali je nemaju sve čestice, kao što su naprimjer fotoni. Materija može biti čista supstanca ili smjesa dvije ili više supstanci.[39]

Atom[uredi | uredi izvor]

Glavna stranica: Atom

Atom je osnovna jedinica hemije. Sastoji se iz gustog jezgra zvanog atomsko jezgro okruženog prostorom zvanim elektronski oblak. Jezgro se sastoji iz pozitivno naelektrisanih čestica, protona, i nenaelektrisanih neutrona (zajedno zvanih nukleoni), dok se elektronski oblak sastoji iz negativno naelektrisanih elektrona koji se kreću oko jezgra. U neutralnom atomu, negativno nabijeni elektroni u potpunosti izbalansiraju pozitivni naboj protona. Jezgro je relativno gusto, masa nukleona je 1.836 puta veća nego elektrona, ali je obim atoma oko 10.000 puta veći od obima njegovog jezgra.[40][41]

Atom je tako najmanji dio za koji se može reći da zadržava hemijske osobine nekog elementa, poput elektronegativnosti, ionizacijskog potencijala, preferiranog oksidacijskog stanja, koordinacijskog broja i željene vrste veze koju gradi (npr. metalna, ionska ili kovalentna).

Element[uredi | uredi izvor]

Ugljik-dioksid (CO2), primjer hemijskog spoja
Glavna stranica: Hemijski element

Hemijski element je čista supstanca koja se sastoji od samo jedne vrste atoma, a karakterizira ih samo njima svojstveni broj protona u jezgrima atoma, što se u hemijskoj terminologiji naziva atomski broj, predstavljen simbolom Z. Maseni broj je zbir broja protona i neutrona u jezgru. Iako sva jezgra svih atoma pripadaju određenom jednom elementu i imaju isti atomski broj, oni ne moraju imati isključivo isti maseni broj. Atomi jednog elementa koji imaju različite masene brojeve nazivaju se izotopi. Naprimjer, svi atomi sa 6 protona u svojim jezgrama su atomi hemijskog elementa ugljika, ali oni mogu imati maseni broj 12 ili 13 (ako su stabilni).[41]

Uobičajeno predstavljanje hemijskih elemenata je pomoću periodnog sistema, u kojem su elementi poredani po atomskim brojevima. Periodni sistem je postavljen u grupe (kolone tabele) i periode (redovi tabele). Periodni sistem je koristan za identificiranje periodnih trendova.[42]

Hemijski spoj[uredi | uredi izvor]

Spoj je čista hemijska supstanca koja se sastoji iz više od jednog hemijskog elementa. Osobine nekog spoja najčešće imaju vrlo malo sličnosti sa osobinama elemenata od kojih su sastavljeni.[43] Međunarodna unija za čistu i primijenjenu hemiju (IUPAC) je postavila sistem standardne nomenklature za sve spojeve. Organski spojevi dobijaju ime u skladu sa sistemom organske nomenklature.[44] Neorganski spojevi dobijaju ime u skladu sa neorganskom nomenklaturom.[45] Osim toga Servis hemijskih sažetaka (Chemical Abstracts Service) preporučuje metod indeksiranja hemijskih supstanci. Po toj shemi, svaka hemijska supstanca se može jedinstveno identificirati pomoću broja poznatog kao CAS registarski broj.

Reference[uredi | uredi izvor]

  1. ^ "What is Chemistry?". Chemweb.ucc.ie. Pristupljeno 12.6.2011. 
  2. ^ Hemija. (n.d.). Merriam-Websterov medicinski rječnik, Pristupljeno 19. augusta 2007.
  3. ^ Theodore L. Brown, H. Eugene Lemay, Bruce Edward Bursten, H. Lemay. Chemistry: The Central Science. Prentice Hall; 8. izd. (1999). ISBN 0-13-010310-1. str 3–4.
  4. ^ Carsten Reinhardt. Chemical Sciences in the 20th Century: Bridging Boundaries. Wiley-VCH, 2001. ISBN 3-527-30271-9. str 1–2.
  5. ^ doi:10.1007/BF01801556
  6. ^ "History of Alchemy". Alchemy Lab. Pristupljeno 12.6.2011. 
  7. ^ Strathern, P. (2000). Mendeleyev's Dream – the Quest for the Elements. New York: Berkley Books, ISBN 978-0312262044
  8. ^ a b Pojam "alhemija", u: The Oxford English Dictionary, J. A. Simpson, E. S. C. Weiner, vol. 1, 2. izd., 1989, ISBN 0-19-861213-3.
  9. ^ "Arabic alchemy", Georges C. Anawati, str. 853–885 u: Encyclopedia of the history of Arabic science, ur. Roshdi Rashed i Régis Morelon, London: Routledge, 1996, vol. 3, ISBN 0-415-12412-3.
  10. ^ Weekley, Ernest (1967). Etymological Dictionary of Modern English. New York: Dover Publications. ISBN 0-486-21873-2
  11. ^ Boyle, Robert (1661). The Sceptical Chymist. New York: Dover Publications, Inc. (reprint). ISBN 0-486-42825-7. 
  12. ^ Glaser, Christopher (1663). Traite de la chymie. Pariz.  citirano u: Kim, Mi Gyung (2003). Affinity, That Elusive Dream - A Genealogy of the Chemical Revolution. The MIT Press. ISBN 0-262-11273-6. 
  13. ^ Stahl, George, E. (1730). Philosophical Principles of Universal Chemistry. London. 
  14. ^ Dumas, J. B. (1837). Affinite (predavanja), vii, str 4. "Statique chimique", Pariz: Academie des Sciences
  15. ^ Pauling, Linus (1947). General Chemistry. Dover Publications, Inc. ISBN 0-486-65622-5. 
  16. ^ Chang, Raymond (1998). Chemistry, 6. izd. New York: McGraw Hill. ISBN 0-07-115221-0. 
  17. ^ First chemists, 13. februar 1999, New Scientist
  18. ^ Ruth, Barnes. Textiles in Indian Ocean Societies. Routledge. str. 1. 
  19. ^ Lucretius. "de Rerum Natura (On the Nature of Things)". The Internet Classics Archive. Massachusetts Institute of Technology. Pristupljeno 9.1.2007. 
  20. ^ Simpson, David (29.6.2005). "Lucretius (c. 99 - c. 55 BCE)". The Internet History of Philosophy. Pristupljeno 9.1.2007. 
  21. ^ Strodach, George K. (2012). The Art of Happiness. New York: Penguin Classics. str. 7–8. ISBN 0-14-310721-6. 
  22. ^ "International Year of Chemistry - The History of Chemistry". G.I.T. Laboratory Journal Europe. 25.2.2011. Pristupljeno 12.3.2013. 
  23. ^ Morris Kline (1985) Mathematics for the nonmathematician. Courier Dover Publications. p. 284. ISBN 0-486-24823-2
  24. ^ "Ancients & Alchemists - Time line of achievement". Chemical Heritage Society. Arhivirano sa original, 20.6.2010. Pristupljeno 23.3.2014. 
  25. ^ Harry Sootin (2011), Robert Boyle, Founder of Modern Chemistry, Literary Licensing, LLC, ISBN 978-1258113612
  26. ^ "History - Robert Boyle (1627–1691)". BBC. Pristupljeno 12.6.2011. 
  27. ^ Jennifer Sloan; Eagle, Cassandra T. (1998). "Marie Anne Paulze Lavoisier: The Mother of Modern Chemistry" (PDF). The Chemical Educator 3 (5): 1–18. doi:10.1007/s00897980249a. Pristupljeno 24.12.2007. 
  28. ^ Mi Gyung Kim (2003). Affinity, that Elusive Dream: A Genealogy of the Chemical Revolution. MIT Press. str. 440. ISBN 0-262-11273-6. 
  29. ^ Humphry, Davy (1808). "On some new Phenomena of Chemical Changes produced by Electricity, particularly the Decomposition of the fixed Alkalies, and the Exhibition of the new Substances, which constitute their Bases". Philosophical Transactions of the Royal Society (Royal Society of London.) 98 (0): 1–45. doi:10.1098/rstl.1808.0001. 
  30. ^ Winter, Mark. "WebElements: the periodic table on the web". The University of Sheffield. Arhivirano sa original, 4.1.2014. Pristupljeno 27.1.2014. 
  31. ^ Timeline of Element Discovery - About.com
  32. ^ Ihde, Aaron John (1984). The Development of Modern Chemistry. Courier Dover Publications. str. 164. ISBN 0-486-64235-6. 
  33. ^ "Chemistry". Chemistry2011.org. Pristupljeno 10.3.2012. 
  34. ^ "chemical bonding". Britannica. Encyclopædia Britannica. Pristupljeno 1.11.2012. 
  35. ^ Matter: Atoms from Democritus to Dalton autora: Anthony Carpi, prof.dr.
  36. ^ Zlatna knjiga IUPAC-a definicija
  37. ^ "California Occupational Guide Number 22: Chemists". Calmis.ca.gov. 29.10.1999. Pristupljeno 12.6.2011. 
  38. ^ "General Chemistry Online - Companion Notes: Matter". Antoine.frostburg.edu. Pristupljeno 12.6.2011. 
  39. ^ Armstrong, James (2012). General, Organic, and Biochemistry: An Applied Approach. Brooks/Cole. str. 48. ISBN 978-0-534-49349-3. 
  40. ^ Burrows 2009, str. 13.
  41. ^ a b Housecroft & Sharpe 2008, str. 2.
  42. ^ Burrows 2009, str. 110.
  43. ^ Burrows 2009, str. 12.
  44. ^ "IUPAC Nomenclature of Organic Chemistry". Acdlabs.com. Pristupljeno 12.6.2011. 
  45. ^ IUPAC Provisional Recommendations for the Nomenclature of Inorganic Chemistry (2004)

Literatura[uredi | uredi izvor]

Commons logo
U Wikimedijinom spremniku se nalazi još materijala vezanih uz:
Commons logo
Hemija portal
Odjeljak isključivo posvećen hemiji
  • Burrows, Andrew et al. (2009). Chemistry3. Italija: Oxford University Press. ISBN 978-0-19-927789-6. 
  • Housecroft, Catherine E.; Sharpe, Alan G. (2008). Inorganic Chemistry (3. iz.). Harlow, Essex: Pearson Education. ISBN 978-0-13-175553-6.